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1. INTRODUCTION

THE problem of confounding in the general symmetrical factorial
design s™, where s is a prime positive integer or a power of prime and
m any positive integer, was solved by Bose and Kishen (1940) by repre-
senting each treatment combination by a finite point of the associated
m-dimensional finite projective geometry PG (m, s) constructed from
the Galois field GF(s) and using linear spaces or flats represented by
linear equations in m variables, This method is not applicable in the
construction of confounded symmetrical factorial designs s”, where s is
not a prime number or its power, nor in obtaining confounded designs
in the general asymmetrical factorial experiment s;Xs,X...Xs,,
where sy, So, ..., S5, are not all equal. Special methods have, there-
fore, to be applied for the construction of such designs.



74  JOURNAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATISTICS

The problem of confounding in designs of the type 3™:x 2", where
m,, m, are any positive integers, and all cases reducible to it, has been
completely solved by Yates (1937). Using methods similar to Yates’s,
Li (1944) has constructed confounded designs for the asymmetrical
factorial experiments 4x 22 5x22, 4x3x2, 42x2, 4x32% 42x3 and
42%2. Nair and Rao (1941, 1942) have developed a set of sufficient
combinatorial conditions which lead to the construction of confounded
designs of the general asymmetrical factorial experiment. Thompson
and Dick (1951), starting from a basic px g designin blocks of g plots
(¢ < p, p being a prime number or a power of a prime), have obtained
three-factor designs with the same block size, the number of levels
being p, ¢ or factors of g. Kishen (1958) has glven balanced de51gns
of the type gx 2% and gXxp®.

The method of finite geometries has been recently extended by
Kishen and Srivastava (1959) to the construction of balanced con-
founded asymmetrical factorial designs. This has been done by using
curvilinear spaces or hypersurfaces and truncating the EG (m, s) suitably.
This method has been further developed in this paper and has been
supplemented by more general methods using vectors in Galois fields.
With the help of these methods, almost all confounded asymmetrical
and symmetrical. factorial designs having optimum properties have
been constructed. The method of analysis of these designs has also
been briefly discussed. The appropriateness of the large number of
factorial designs that have now become available under experimental
situations commonly encountered will be discussed in a sepa1ate com-
munication.

2. 'HYPERSURFACES IN FINITE GEOMETRIES
2.1. Simple Hypersurfaces ‘

" A hypersurface 1n EG (m, s) may be represented by the equation

QS (xl; Xgs + o0 xm) =0 . - - (1)
of whlch a parllcular case is given by the equatlon '
ay + ayfi (x) + az /2 (xz) + ...+ amfm (Xm) =0 . )

in which all the variables occur separately,

a[,, a, az, R belng any elements of GFE(s)

and’ » _ ( 4 | .
fi) =anx+apxt+t . ..+ ¥h (3)
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where the a;’s are also elements of EG (s).
‘When f; (x) = x%, .we get simple hypersuljfaces of the type
dy + @yt + apxets + ..+ apX,"™ =0 @
which we shall éonsider ﬁrét.
‘The following theorem will be proved in this connection:

TaeoreM 2.1.—If d is a divisor of s — 1 =p* — 1, then x* and
x-1-¢ will give exactly (s — 1)/d-+ 1 distinct values whei x is varied from
Ay to ds—l fl’l GF (S).

Let d be a divisor of p» — 1. Itis known that the equation x¢ = 1
will have exacfly d roots. Let these roots be py, py, ... pg.  Since
d < (s — 1), there will be other ¢lements not included in this set of w’s.
Let v, be such an element and let v;d = B;. Then the equation x¢ = B,
will be satisfied by vpy, vipte, .- .» ¥iig. Let vy be another element not
included in the two sets (p,) and (vid), and let »,? = B,. Then the roots
of x¢ = By will be vapy, vapts, .. ., #opg.  If (s — 1) = gd, then obviously
we will get the sets (vyus), (vamss)s - . -» (Vg—1ps), and all these sets together
will exhaust the (s — 1) elements (excluding zero) of GF(s). The set.
(v,y,) (r =0,1, .. —1; v=1) will satisfy the equation x? = B,
(where B, = 1). Hence x# will give g distinct values when x is varied
from a; to a,_, and these will be By, By --vs Be—1- Including'x =0,
we shall thus obtain (g + 1) distinct values when x = ap, a3, ..., @4y.
Further, we know that all the elements of GF(s) satisfy the equation
x-1 =1, . Hence x*~! = 0 when x = ag.and equal to «, for all other
values of x. Since, for x = a;, ay, ..., a,_1, We get g distinct values
for x¢, we shall obtain ¢ distinct values for 1/x¢ and, consequently, also
for x*-1/x? or'x*--¢, Hence the theorem."

2.2. Polynomials Yielding k Distinct Levels

The qﬁestion now arisés whéther it is possible to get k disiinct
levels by taking instead of f; (x) = x" in equatlon (2), an approprlate“
polynomial in x, say,

y= f(x) =ayx + azxzj"{— L+ as_l'-xs-'-i | L . )

where k is any number less than s. " This means that f(x) should be
such that -for x = ag, a3, ..., a,y, f(x) provides only k distinct values,
say, Y1, Va» -+ Vi This result will be proved in the two theorems
that follow, _

3
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THEOREM 2.2.—The power-matrix

o ay? R ast
ag a® ay! a,*1
e o
s = ; , S =l ®
ar a’r af af
2 8—1
0.1 Og—1 Xp—1 g—1.

where o (r,t =0, 1, ..., s — 1) are all non-zero elements of GF (s),
is of rank (s — 1) and its inverse is given by

=2 8—2 §—2 8—2
o ay ay Gg—1
§-3 8—3 5—3 8—3
oy ag oy X1 -
— Q- — —r— —r—1 —r—1 —r—
T=S!=0qa?_; x at L gt R Y W S I )
ay Ay a; Ty—1
% oy ay. ay

where s =p"(n > 1). -

Let us consider the product ST. The element in the r-th row and
t-th column of (ST), where r + ¢, is given by the sum of products of ele-
ments in the r-th row of S and #th column of 7, and equals

al;fe,0 2 4 023 4 ... +ofef 7 4 L 4 a0
e @)@+ )
@]




CONFOUNDING IN ASYMMETRICAL & SYMMETRICAL FACTORIAL DESIGNS oy

Now, since o, and a, are both non-zero elements of GF (s), the quotient
(a,/a,) exists. Let

Y # ®)

ay
The above expression then reduces to
a0t [w 4 w? + wd ...+ o oo+ ws'i]--= 0
since’ :
w#a and o !=aq for all w(s0).
Also, for r =t the product (8) becomes

al gt oy + o+ oo Fag o (p — 1) times]
= a_lﬂ_l X ay X ap_]_ = aq.
Hence the product ST is a unit matrix. Obviously, the rank of both
Sand Tis (s—1).

THEOREM 2.3.—
Let y and f(x) be defined as in (5), and let
— 4
ay
A= : . Here f(0) =0.
. @1 |

Then there exist a set of matrices such that as x is varied from «; to

a,_3, only (k — 1) distinct values of y other than «, are obtained, so that '

including x = 0 we have k distinct levels. Further, there will be a sub-
set of this set of matrices such that the (k — 1) distinct values of y
correspond to certain given values of x, say x, Xi, ..., Xi_;.

The proof is simple. Consider the product S4 and let ¥ = §4.
Obviously, since S is of rank (s — 1), Y exists and equals

al><a1 + aZXa12 + “ne + (ls_1><a18_1 yl
..................................... Ve
V= aXa + aXa 4+ ...+ G gXa,t? = . sa
» Say
_alx a1F+asX e + ... + a1 Xa 7t e

©)
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where y, = f(x;). - Now we want only (k — 1) distinct elements in the
last matrix in (9). This may be done in [(s—1)!/(k—1)! (s—k)!]x k>
ways, corresponding to each of which there will exist a surface giving
- k distinct values. The polynomials yielding distinct fixed values y,,
Pigp o ovs Yip agalnst fixed levels of x=x;, xi, ..., x4 can be
obtained in (k)** ways. The corresponding set of surfaces- may be
called the kth-level isomorphic set of surfaces; -and the corresponding
set of 4 matrices will be given by 4 = TY, where the (k — 1) elements
in Y are fixed and the rest may vary from ag to @1

3. ASYMMETRICAL CONFOUNDED DESIGNS

Let us now consider equation (4). If A,"is a factor which is
included in.equation-(4) as x,*!; the contribution made by it in the equa-
tion can take only s; = (s — 1)/b; + 1 distinct values, s; being thus less
than s, assuming that b, is a divisor of (s — 1). _Let the s; distinct values
of x# correspond in order to the values of x; equal to ag, a4, a;,, @i, .,
a;,_,. This means in effect that equation (4) will behave as if” the ]-th
factor had only s; distinct levels namely, R .

(0’ L, ji Jas - o 134—2) - - : . (10)

In the context of asymmetrical designs, this suggests that the levels

of x; other than those given by (10) be left out of consideration and the

Euclidean Geometry EG.(m,s) containing s™ points be so truncated

that all the treatment combinations in which the above levels of 4,

occur are cut out. Such a truncation may be done with respect to any
number of factors, as required.

Consider now m factors A, 4,,-..., 4, at levels sy, 55, ..., 5,
respectively, where s;:is a prime number and s, < s, for all i> .
As shown in Section (2.2), it is possible to have s; equal to any number
less than s, by taking a suitable polynomial of x in GF(s;). Here for
simplicity, we shall consider the.case where the factors 4, 4, ..., 4,,
corresponds. to xy’:, X% ..., x,'™. respectively. . Suppose now we
desire to confound "an /n-factor interaction. We then take the pencil
of hypersurfaces represented by ‘

X+ [axe” + ax* 4+ .o+ oo, X" =, (11)
where r=0, 1, ...., (s — 1), in the suitably truncated EG (m, s,),
it being presumed that X varies from ag to a,_; and x; (i #% 1) varies

T OVET ag, Oy Gy, G, -5 Qg p. W may now proceed to divide the

5 X 8aX ... X8, tréatment combinations in s, blocks of s,Xs3X...
X s, plots each with the help of the pencil (11). It can be shown that
the pencil (11) will divide the treatment combinations symmetrically




“’
!

CONFOUNDING IN ASYMMETRICAL & SYMMETRICAL FACTORIAL DESIGNS 79

into s, sets: For, if X5y, Xgrp o5 Xjiys ++ s Xy, 1S any combination
of the levels of the factors A4,, A4s, ..., A; ..., A, the expression
within brackets on the L.H:S. of equation (11) will have a fixed value,
say, A (tyy ...s Ly ey by) I GF(sy).  If Xp,,1is the value of x, such
that x4+ 4 =aq, (r—— 0,1, 2, ..., s— 1), then the treatment
combination (¥; 44, Xa,s - - -» Xy, Will appear in the a-th block. Thus,
all the combinations of the levels of x,, Xg ..., X, Wwill appear
with different levels of x, in different blocks. ‘Since x; can have s,
values, we shall get s, blocks of equal size, each block containing all the

"§yX 83X ... X5, combinations of A4, A3, ..., A

It appears that in the replication provided by a pencil of hyper-
surfaces, the interactions confounded may belong to two types. The
interaction corresponding to equation (11) which generates the repli-
cation is always partially confounded. This is, so to say, the deliberately
confounded interaction. However, some of the interactions may get
partially confounded automatically owing to the fact that the number
of combinations of levels of factors to which they relate is not equal to,
or a factor of, the block size. For example, in the 4xX2x2 design in
blocks of 4 plots, our pencil will partially confound the 4BC interaction
in a particular replication, and the AB and AC interactions will also be
partially confounded since there are 8 combinations of levels of 4B
and AC and the block size is only 4. Thus, in the rephcatmn corres-
ponding to equation (11), the main effect A4 and all the interactions in
which it enters will be partially confounded if s; > s; (i =2, ..., m).

For obtaining a design balanced with respect to all main effects
and interactions, we may have to take all the replications obtained by
varying the o, (j=2,3, ..., m) OVer ay, Gy, ..., 0y, Varying only
a particular «;; (j fixed) from o; to «,_; will mean, in a sense, balance

_over a particular contrast ‘of all factors other than A,

When there. are at least two factors at s, levels each, no main effect
will. be part1a11y confounded. The interaction A4, will be partlally
confounded if only there is no third factor at s, levels, and so on. 'In
the former case, varying /, in a;, from 1 to (s; — 1) we shall obtain the
(s; — 1) replications required for balancing the 4,4, 1nteract10n with
respect to the rest of the factors. .

_ 4, TLLUSTRATIVE EXAMPLES
4.1. The 3xX3x2 Design in Blocks of 6 Plots

Let the three factors be 4(0, 1, 2), B(0, 1,-2) and C(0, 1). In
EG (3, 3), we truncate all the points with x; = 2, since x2 =0, 1, 1 for
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x=0,1, 2 and x =2 does not give a distinct value for x2. The
truncated geometry will have 18 points left corresponding to the 18
treatment combinations. The balanced design in two replications,

confounding 4B (J) and ABC (J), is generated by the pencils of hyper-
surfaces

X+ Xk x%2=0,1,2 } (12)

X1+ X+ 2x,2=0,1,2

For obtaining complete balance on AB, we may take two more
replications generated by the two pencils

X1 + 2x, + x52 =_0,1,2}

(13)
X+ 2%, 4+ 2x,2=0,1,2

which, by themselves, provide a balanced design partially confounding
AB(I) and ABC (I).

The above can be easily generalized to obtain 31X 2 confounded.
designs in blocks of 37-2x2 plots.

4.2, The $2X q‘Design in Blocks of sq Plots, Balanced in (s — 1) Repli-
cations; where s > g

Let the ¢ levels be obtained by taking the polynomial f(x). Let
the factors be 4(0,1,...,s—1), B(O,1,...,5—1) and C(0,1, 2,
....q—1). Let us consider the replication given by the pencil

X+ o+ oa, f(X) =a,(r=0,1,...,5— 1; iy, isfixed)
(14)
which will partially confound the 4B and ABC interactions. The
(s — 1) replications obtained by allowing i, to vary from 1 to (s — 1)
will give a balanced set. - For complete balancing with respect to 45,
i, also is to be varied from 1 to (s — 1), giving the full set of (s — 1)2
replications. '

Some of the more useful designs derived from this series are 32x 2,
422, 52x2, 78X 2, 82x2, 42X 3 and 52%3 in blocks of 6, 8, 10, 14,
16, 12 and 15 plots respectively. As an illustration, the design
5x5x%3 in 15 plot blocks is given in Table I, where the ¢;’s denote the
level of the factor C, and X,’s denote the sets of AB -

Xo: aghy, arhy, asbg, asbs, asby

X1 agbs, arby, asby, asbs, azh,




B

CONFOUNDING IN ASYMMETRICAL & SYMMETR[CAL FACTORIAL DESIGNS 81.
X,: ‘aobz, arby, axby, ash,, asb,
- Xyt dobs, aybs, asby, asby, aghy
Xy: agby, arbg, ashy, azh,, asb,

The relative loss of information in an s2x ¢ design, on each of the

(s — 1) confounded d.f. of ABis (s — q)/qg(s — 1) and on each of the
(s — 1) (¢ — 1) confounded d.f. of ABC, it is s/{g (s — 1)}.

TaBLE T

SX5X3 balanced design in 15 plot blocks involving four replications

Replication I Replication II
Block No. 1 . 2 3 4 5 6 7 8 9 10
Xooo Xiop Xocy Xscg Xyc Xoco Xico Xocy Xgep Xy
Xieg Xooy Xien Xoor Xaog Xsoo Xy Xoop Xier Xooq
Xics  Xyoo Xoes Xico Xoco Xices X, 22'2 Xgcy Xycs  XyCo
Replication ITT Replication IV
. Block No. 11 12 13 14 15 16 17 18 19 20
Xoto Xico Xocy Xzep Xyt Xoto  Xaco Xoco Xaty Xy
Xooy Xaoo X Xooo X Xier Xy Xyoo Xy Xyo
Xico Xico Xicy Xoto X0 Xocs Xios Xieo Xoto Xics

The above can be easily generalized to the cbrresponding s gt
designs in blocks of s™—"-1X ¢" plots, e.g., 3xX3x2x2 design in 12 plot
blocks and 4x4x2x2 in 16 plot blocks.

4.3. sX@qXqy Design in Blocks of q,q, Plots, (s > qy, q,), Balanced
in (s — 1)® Replications

In this design, the main effect 4 is confounded partially.

Many useful designs, e.g., sX3Xx2, sx4x2, sX2%X2, sx4x3,
§X 5% 2, ete. in blocks of plots 6, 8, 4, 12 and 10 may be derived from
_this general design. If s > q,¢,, balancing may be achieved in (s — 1)
replications only.

6
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4.4, 4x3x2x2 Design in Blocks of 12 Plots

Consider GF (22) with minimum function x* = x - 1 and elements
ap, @ =1, ay=2x, a3=x*=x-+ 1 Denote the factors by
A(0,1,2,3), B(0,1,2), C(0,1), D(,1). The functions f(x) corres-
ponding to C and D may be taken as x,® and x,* respectively. For B,
let us choose f(x) = ay o, ay and ay respectively corresponding to
X = ag, aj, ap and ay. Then, from (9), we have

s

a; @y’ oy’ 51 ral + ay? a3

A=t ] oy ay a4 X ay, =1 a1+ asas | = ag
Gy Gy Og Qo ay + ag Qg

Hence " f(x,) = agxy; + agxy®.
The pencil which confounds ABCD may be represented by the equation

X+ (agXy 4 agx®) + [x® 4 agx®l = o, (r=10,1,2) (16)
in the truncated geometry EG (4, 4). The replication generated also
partially confounds the interaction AC, 4D, ACD, ABC and ABD.
A design in 3 replications providing balance over 4C and 4D is given
in Table IL.

TasLE 1I .

4% 3%x2x2 Balanced design in 12 plot blocks, involving
three replications

Level of C, D

Replication i, 1 II il

"BlockNo. ~ .. 1 2 3 4 5 6 7 8 9 10 11 12

Level of 4,8
00 .00 10 11 01 00 Ol 10 11 00O 11 01 10
- 01 . 10 00 01 {1 01-00 11 10 11 00 10 O1
02 .01 11 10 00 11 10 01 00 10 Ol 11 00
10 .. 10 00 0! 11 Ol 00 I1 10 11 00 10 Ol
11 .. 00 10 11 0Ol 00 OL 10 11 00 11 0Ol 10
12 .. 11 0l 00 10 10 11 00 Ol 01 10 00 11
20 . 11 01 00 10 10 11 00 O1 01 10 00 11
21 .. 0l 11 10 00 Il 10 Ol 00 10 O1 11 00
22 . 10 00 Ol 11 01 00 11 10 11 00 10 Ol
30 . .. 01 11 10 00 11 10 0l 00 10 01 11 00
31, .. 11 0l 00 10.10 11 00 Ol Ol 10 00 11

32 .. 00 10 11 01 00 O1 10 1II OO 11 01 10

(15)
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1t has to be noted that the coefficients of x,% and x,®> have been kept

different in (16). This has to be done as otherwise one degree of free-
dom belonging to the interaction 4B will also be totally confounded.
The reason is that if their coefficients are not distinct, x,* and x,3, when
combined together, will not generate all the elements of GF (22).

4.5, s;X8pX 83X ... XS, Design where s; are equal to, or are Powers of,

a Prime Number p

"+ As a special case of this design, let us consider the 4x2x 2 design

.in blocks of 4 plots. Denote the factors by 4'(0, 1, 2, 3), B(0, 1) and

C(0,1). A suitable pencil confounding the  4BC interaction is repre-

X1+ oy, (0% + ax3®) = o, (=0, 1, 2, 3; ip fixed) - ¢Y))
This also partially confounds the 4B and AC interactions. A design

“in-3 replications is obtained by taking #; = 1, 2and 3 and is shown in

Table 111 below, in which the confounded interactions are also given.

© TasLE III
4%x2x2 Balanced design in 4 plot blocks

Replication .. 1 11 _ III
BlockNo. .. 1 2 3 4 1 2 3 4 1 2 3

000 100 200 300 000 100 200 300 -000. 100 200
110 010 310 210 111 0Il 311 2II' 101 001 301
© 201 301 001 101 210 310 010 110 211 311 011
311 211 111 o011 301 201 101 001 310 210 110

300
201
111

010

Confounded A'C, 4B A"C,A"B A'B, A"C
Interactions  A4"BC A'BC A”BC

. HC;’C A = (aa +ay—a; — ao), A" = (a3 — ay— ay + (10) and AN; =

(a3 —as+ a, — ag).

) The loss of information on each of the 4B, AC and ABC inter-
actions is 1/3. The above design can be immediately extended to 4 x 2"
designs in blocks of 2" plots, balanced in 3 replications, as above.
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Designs of the type 9x3x3 in blocks of 9 plots, 16x4x4 in
blocks of 16 plots, 8x2x2x2 in blocks of 8 plots, 8x4x2 in blocks
of 8 plots, etc., can also be constructed by similar methods. These are
balanced in 8, 15, 7 and 7 replications respectively. These confounded
designs are amenable to arrangement in quasi-Latin squares.

4.6, 5, X8S3X83X ...Xs, Design in- Blocks of s;X83X84X ... X5, plots
' where 8, is a factor of $;X 83X 8, X . .. Xs,, and is a Prime Number
or a Power of a Prime, and s, > 8; (i # 2)
~ Consider GF(s,*). By Theorem 2.2, we can obtain s; distinct
levels from a suitable polynomial in GF(s,®). Then a pencil of hyper-
surfaces will divide the total number of treatment combinations into
5,2 blocks, each block containing (1/sy) (583X 53X ... X 5,) plots.
We may then-suitably combine sets of s, blocks out of these s,? blocks
to get s, new blocks, each containing s;Xs3X ... Xs, plots.

4.7. $3Xs4XS;s... XS5, Design ins? Blocks of sX$;X8;X ... XSp Plots
each

Here 3 factors have been taken at s levels so that the number of
plots in each of the s2 blocks may still remain a multiple of s so as to
keep all the main effects unconfounded. As in the symmetrical case
of (s™, s%), we have here to confound two pencils simultaneously.

As an illustration, let us take the 53x 2 design in blocks of 10 plots
each.

Let us take the pencils
X+ 2x,+2x4=0,1,2,3,4

and (18)
x1+x3+x44=0, 1’253:4

- in the truncated EG (4,5). Balance on any particular contrast belong-
ing to the first three factors 4, B and C can be achieved in 4 replications.

A generalization of the above procedure leads to the construction
of balanced confounded designs of the type s™ XsyhXsghX ... X58,"
in s* blocks of s™*XshXskX ... Xs,” plots each where k <<my;
balancing being achieved in (s — 1) replications only, if & < (s — 1).

4.8. Method of Cutting out from an s™ ‘De'sign

Suppose we have got an s” design in s* blocks of s"* plots each,
where s is_a prime power. Then it can be easily seen that we can
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derive a design of the type s*"Xs,;4XSaX ... XS, where . s <s,
from it by cutting out in all blocks all the treatment combinations which .
contain any out of the last (s — s,) levels of the factor A4,, i varying from
k - 1 to m. This method is essentially equivalent to cutting out points
lying on the (m — 1)-flats x; = a, [r varying from s; to (s — 1);
i=k+1,...,m from a set of pencils of linear (m — 1)-flats giving
the confounded symmetrical design. The designs obtained by this
method will, however, all correspond to simple confounding to be de-
scribed in the next section, and are obviously a particular case of the
designs obtainable from hypersurfaces. However, as would appear
from the foregoing sections, the hypersurfaces provide a natural repre-
sentation of all asymmetrical designs which are derivable by the above
method of cutting. -

5. UsEe oF GALoIS FIELDS IN CONFOUNDING IN FACTORIAL DESIGNS

Let us now examine the role played by Galois fields and finite
geometries in the construction of confounded factorial designs. In
the case of confounding in symmetrical designs with s” treatment com-
binations, the number s enters both as the level of each of the m factors
and is also used in the pencils in finite geometries in splitting up the sm
treatment combinations symmetrically into s parts. We have seen,
however, that with truncated geometries, the levels of each factor may
hot be the same and still the use of GF(s) leads us to s symmetrical-
partitions. If the total number of treatment combinations is v and we
want s blocks in which the treatments occur symmetrically, evidently
s should firstly be a factor of v, which means that at least one factor is
to be at s levels. As we have shown in Section 3, we can, in that case,
put all the treatments v into a sort of correspondence with the s elements
of GF(s). The construction of a confounded factorial design necessarily
involves the partitioning of treatments into s parts, i.e., putting the
v objects into correspondence with the s blocks. The GF(s) is thus
simply a mathematical device for effecting such a correspondence. _

The above suggests that we may construct the (s», s*) design diréctly
from GF(s¥). This procedure should appear to be more natural than
the ordinary one inasmuch as the blocks required correspond one-to-
one to the elements -

%gs Oy Qg gy » o+ «s AgFg, aak—l of GF (Sk)'

It also appears that the use of GF (s) to group the factors even when all
of them are not at s levels may-also be possible and may lead us to



86 JOURNAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATISTICS

interesting designs since the groupings made by GF (s) are in a sense
symmetrical.

5.1. General Theory for Symmetrical Case

- For developing the above approach, the use of vectors in Galois
fields will be made. We first define the basic terminology.

(a) Any set of n elements in GF (s) will be called an n-vector in
GF(s).

(b) Corresponding to a factor 4 at k levels the vector (0, 1, 2,

k — 1) in the real field will be called the Level Vector of A.

(¢) Corresponding to the level vector of A4, there is an Associated
Vector (By, Bis Bes - - -» Bio1) of A, where the s are all elements of
GF (s), not necessarily distinct..

(d) Any vector in GF (s) used to generate thie required design will
be called a Generator. With m factors, the generator will be an
m-vector in GF(s). . 4

(e) The sum S and product P of two vectors (ay, as, ..., a,) and
(by, by, ..., b,) in GF(s) will be S=(a,+ by, a,+ by, ...,a,+b,)
and P = (a;by, aybs, ..., ayb,) while their product sum will be
0 = ajb; + ashy + ... + a,b,.

(f) If the elements of the Associated Vector of a factor correspond
one-to-one to the elements of theLevel Vector, all the confounded inter-
actions in which the factor enters may be said to be simply confounded
where this is not the case the confounding is said to be non-simple.

With respect to a particular generator, the set “of all treatment
vectors, which we may call treatment space, may be divided into s parts,
the jth part containing those treatment vectors the associated vectors
corresponding to which give a product sum a; ‘when multiplied by the
generator. Here ; is the (j+ 1)-th element of GF (s). Since the usual .
arrangement of the s elements of GF(s) in the order ¢y =0, a; = I,

Cay=0, ..., 0, =07 , ag_y = 052 presents difficulties in the addi-

tion of elements when n #1(s=p), it will be convenient to have
a rearranged form for the elements of GF(s). In GF(s = p"), where
p is a prime number, the minimum function is of order n and of the
form

O = po + 0 + 0% 4 L+ [T (24

where p, are elements of GF(p). Hence any element of GF (p") may be
represented in the form

g+ &0 + g202 4 ..+ guabt (25)
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where the g, are elements of GF (p). Further, the clements of GF(p")
will be so arranged that (25) is the (1 + go+ g+ gp?+ ... +
g,-1p""1)-th element, where the g’s and p will be taken as belonging to
the real field. Thus, in this rearranged form for the elements of
GF(32), 6+ 2 will be the (1 + 2 -+ 1x3)-th, or the 6th element.

For simplicity, let us consider (33, 3) design with blocks of 9 plots.
Here we require 3 partitions. Hence we use GF (3). The level vectors
are given by 4(0,1,2), B(0,1,2) and C(0, 1,2). Let us have simple
confounding so that the effect vectors are (0, 1,2) or (0,2,1). Now
consider the different forms of generators. A generator like (1,0, 0)
will divide the treatment space into 3 parts, the j-th part containing all
the treatment vectors containing the level a; of 4, which implies that
the main effect is confounded. Considering the generator (I, 1,0),
we find that the j-th part contains each level of C three times with- each
level of A or B, which implies that only the factor C does not enter the
confounded interactions. Similarly, it will be found that the generator
(1, 1, 1) corresponds to, the ABC interaction and corresponds to the
pencil x; + x, + x3=0,1,2 in EG(3,3) with the usual approach.
Consider now (33, 3%) design, in which case we use GF (3% to get
9 blocks. A general element of GF (3%) is (10 -+ ), where r, s = 0, 1, 2.
Let the effect vector be (0, 1, 2) or (0, 2, 1), as above. It will be found
that factor or factors which correspond to a zero eclement in the
generator are not confounded. Also, the generator should contain at
least one element involving 6 ‘and one element out of 0, 1or2;
otherwise, since we are working with GF (3%) but with factors at only
3 levels, the generator will not divide the treatment space into 9 equal
parts. Now consider a generator of the type

(L0 + A, v6, ) | (26)
This vector can be written as .
8(L v,0) + (A0, p) ' (27)

Suppose that the treatment vectors in a particular block have
(r6 + ) as their product sum with (26). Then it is clear that they would
give r and s respectively as products with the two component vectors of
7). If L, l,, my, m, are any elements of GF (s), the same block would
give {(lir + mys) 0 + (lr + mys)} as product with the generator

{(llc + 77’11)\) 7 + lzc + mz)\: llve + ]‘.’.V: my /‘LG + ]712[.4} (28)

and will be the block No. [3 (I -+ mys) = (I 4 m,s) + 1] of the same
replicate, if the generator (28) is used. The two generators (26) and
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(28) are equivalent, The close connection with the usual theory is evi-
dent, the two component vectors in (27) being the two confounded pen-
cils represented by

x4+ vx;=0,1,2
Axl + ‘U/x:z = O, 1, 2.

It is evident that in order that no main effect is confounded, all
the elements in the generator (26) should be distinct.

Consider now a p™ design in p* blocks of p™* plots each, where
p is a prime number. Here we require pt partitions and, therefore, use
GF(p¥). The level vector corresponding to each factor is (0,1,2, ...,
p —1). We have (p — 1) distinct associated vectors for simple con-
founding. Let us use each ome for one replication, getting (p — 1)
replications in all. Now suppose we want to confound the k
independent interactions represented by the k equations

11Xy + ag1Xg + e + am;xm = G
a12x1 + a22x2 + e + amzxm = a,2
.-.----:: .............. e e e ) (29)
1y, xl + a2kx2 [ + amkxm ar]‘,
(rpre, vosr,=0,1, ..., p—1).
To the above corresponds the generator
(ay + 550 + apgt? + .. a5
ag + gl + agf® + ... ag0Y,
U1 + amzo _{" amae2 + + amkeh 1)
or A
I . k i i )
A 3 b, Sanir, L, 3 amjaf—l) (30)
i=1 i=1 j=1
Then the generator
E—1 k. i k-1 %k . k—1 k. .
2 2yt T Syl 0T 2y (31)
ji=0 i=1 - i=0 {=1 i=0 i=1 .
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where vy,’s are any elements of GF(p), gives the same replication (for
all j) as (31) under the condition that the A vectors represented by

k. k % :
( 2 Vit )_z YijQ2i> =y 2 ?’ij“,,.i) s (32)
ANi=1 i= i=1

j varying from 0 to (k — 1), are independent. This means that the
vector space of rank k, with the basis given by (ay;, agj -+ o5 @),
j varying from 1 to k, is confounded, which corresponds to the principle
of generalised interaction enunciated in this general case by Bose and
Kishen.

Tt may be said that in a sense the generator (30) integrates the inter-
actions confounded by the bundle of k pencils corresponding to (29)
just as, for example, the moment generating function of a distribution
integrates its moments. '

In the case of an s™ design in s* blocks, we can proceed in the same
manner as above, remembering that the o;’s are now elements of GF (s)
and not of GF(p).

5.2. Kishen’s Series of qx2% and qXp* Designs, q being any Integer
and p an Odd Prime Power

The two series of designs given by Klshen (1958) are typical
examples of non-simple confounding defined earlier. In the gx22
series, the 3 factors are A(0,1,2, ...,¢9—1), B(©0,1) and C(0,1).
Since we want a design in 2¢ plot blocks, we use GF(2). If (1,1, 1)
is taken as the generator, B(0,1) and C(0,1) the associated vectors
for B and C, it can be easily seen that the g replications required are
obtained by taking the g associated vectors for A4 represented by the
g unit g-vectors in GF (2), namely,

1,0,0,...,0); (0,1,0,...,0); (0,0,1,0,...,0); ...
0,0,0,...,0, 1) 33)
For the gxp? design, we use GF(p), and the associated vectors
of B and C are respectively
B(©,1,2,...,p—1) and C(O,1,2,...,p—1).
The set of associated vectors corresponding to A are the g-vectors in
GF (p) represented by

(afl, Qg Aoy - a()); (aO’ a1, (10, LI ao)S e ; (a0: CLO, LIEICE] a()> al)
(ag, g, ags « - -5 @g); (%, @gy Ggy + vy @g); .. (ag, Ggs - - -y ag, ag)
(a(p—l)IZa Agy Agy « + s ao)5 (a(): C(p—1)/25 Xgs + o5 ao): cees (ao’ gy v vy O, a(p—1)/g). (34)
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It can be seen that if the vectors in (33) and each of the (p — 1)/2
sets of vectors in (34) are arranged in the form of a square, as under,

100 ... 0
010 ..0
00 I 0
, (35)
00 0 1

the element 1 of GF (2) falls once in each row and once in each column.
Comparing it with the latin square

— 4, A, A, 4, —
A, Ay Ay Ay
Aer A, Ay Ays -
........................ (36)
Ay Ay Ay . A4

we find that here the letter A has been replaced by 1 and the others by 0.

This makes possible a generalization of this approach for construc-
tion of gx22 and gxp? designs with less loss of information on BC.
For example, if 4, 4,, ..., 4, in the second square are replaced by 1
and 4,4, Ay, ..., A, by 0, and the g rows of the resulting square are
taken as associated vectors of 4, we shall get a ¢x 22 design in 2¢ plot
blocks, the loss of information on BC being (g — 2)2/g%. A similar
approach with the gxp? series can be made and can be utilized to
construct the 5x3x3 design in 15 plot blocks.

5.3. Certain Factorial Designs Using b.i.b. Property

Let s b€ a prime power and a any integer. Let there be two factors
A and B, each at aXs levels. We can divide the total number of a%s?
treatment combinations into axs blocks of axs plots each in such a
way that no main-effect is confounded. Suppose these axs blocks
confounding (as — 1) d.f. belonging to interaction 4B are
X1, Xy ..., X, Now, suppose, a balanced incomplete block design
(b.i.b.d.) exists with v = as, and block size k < v. Then immediately
we get a confounded factorial design asxasin blocks of size kas,
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partially confounding (as — 1) d.f. of interaction AB. Preferably k
should be small. In particular, we can always have k = 2, the b.i.b.d.
in this case being v=uas, b=as (as— 12, k=2, r=(as— 1),
A =1, giving asxas design in 2 as plot blocks.

. Alternatively, the bibd, v=as, b=sfas—1), k=a, r=
(as — 1), A=a— 1, can also be considered if one exists.

When a = 2 and s = 3, we get the bibd. v=6, b=15 k=2,
r=5 and A = 1, which gives the 6 x 6 design in 12 plot blocks shown

below.
TABLE TV
6% 6 Balanced design in 12-plot blocks
Replication .. I 1I IIT v v
BlockNo. .. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

X, X X X X X, X X X X X X, X X X,
X, Xy Xo X3 5@3-7‘/6 Xy Xg Xy X5 Xy X Xs_Xs X

Here the treatment combinations included in the set X, are those which
satisfy the equation

X, + x,=imod 6 37
(i=0,1,2 3 4,5).

It will be seen that this method gives designs in which the total loss
of information due to confounding is less than in the designs obtained
by using the axs sets Xy, X,, ..., X, as blocks.

The method is particularly useful in symmetrical or asymmetrical
designs in which the number of levels of each factor is not large, and
the block size can be increased without appreciable increase in error.

 For example, we can construct a 55 factorial design in 10 plot blocks
in 4 replications by taking a b.ib.d. withv=35,b=10, k=2, r=4
and A= 1. Similarly, we can construct a 7x4 factorial design in
12 plot blocks in 3 replications by considering the b.ib.d.,,v =7,b =171,
k=23, r=3and A= 1, on the 7 cets obtained by using GF(7) along
with the associated vectors 4 (0, 1,2, ..., 6), B(0, 1,2, 3) and the gene-
rator say (p, q) where p, g are non-zero elements. It is noticeable that
by this procedure the number of replications required for balancing is
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only 3 as against 6 replications in the design derivable directly froin the
Galois field with block of 4 plots.

5.4. (pl; po)™ Designs in B/oc-ks of py™"s ps"~'+ Plots, p;, p, being any
Prime Powers and 1, 1, < m.

The procedure is simple. First, we form P blocks by consider-
ing a particular generator the elements of which belong to GF (py").
The associated vector for each factor may be such that it is divisible
into p, sets of elements, each set containing p, distinct elements belong-
ing to GF (py). At the next stage, we similarly consider GF (p,~) for
further dividing each block, for each of which we take the same
generator. The associated vector for each factor in this case consists
of p, distinct elements belonging to GF (p,), one element corresponding
to all elements in one of the sets out of the p, sets defined above for the
earlier associated vector. The procedure will be illustrated by deriving
a 6x6 design in 6 plot blocks. '

The associated vectors for 4 and B at the first stage may be taken
as (0,1,2,0,1,2), and the generator as (1,1). We use GF(3) since
6 = 3Xx2. At the second stage, we use GF (2) with the generator (1, 1)
and associated vector for both 4 and-B as (0,0,0, 1, 1, I). This gives
a set of 6 blocks for the first replication. To this we may add another
replication obtained by taking (I, 2) as the generator at the first stage.
The two replications together provide a balanced design, which is given
in Table V.

TABLE V

6X6 Design in 6-plot blocks

Replication .. 1 11

Blocks X XX Xy Xy X, Y, Y, Y, Y, Y, Y,
00 0L 02 03 04 05 00 Ol 02 03 04 05
12 10 11 15 13.14 11 12 10 14 15 13
21 22 20 24 25 23 22 20 21 25 23 24
33 34 35 30 31 32 33 34 35 30 31 32
45 43 44 42 40 41 44 45 43 41 42 40
54 55 53 51 52 S0 55 53 54 52 50 51




CONFOUNDING IN ASYMMETRICAL & SYMMETRICAL FACTORIAL DESIGNS 93

In this design the single degree of freedom for AB corresponding to
the contrast (a5 + a, + a3 — ay — ay —ag) (bs + by + by — by — by— by)
is totally confounded in both the replications. Further, 8 more degrees
of freedom belonging to 4B are partially confounded, on which the loss
of information is 4. The total loss of information is 18X} =35,
which is equal to the number of degrees of freedom confounded in each
replicate so that the design is a balanced arrangement.

Balancing for the case m = 2 would be achieved in (p; — 1) (p, — 1)
replications, which would be obtained by varying the second element
of the first stage generator over (p, — 1) non-null elements of GF (p,)
and further for each of these cases by varying the second element of the
second stage generator over the (p, — 1) non-null elements of GF (p,).
Balanced designs of the type (py, pe, - -, pr)™ in blocks of p™s, p,™~"

., p"s plots, where ry, re, ..., 1, <m, can be constructed in a
similar manner in (p; — 1) (p, — 1) ... (p, — 1) replications (provided
n<p—1;j=12,...,k).

5.5. Balanced Asymmetrical Designs with Reduced Number of Replica-
tions

Firstly, let us consider three-factor designs of the type s;X5,Xs3
where both s; and s, are prime powers. Let s >, > 55 From
Section 4, we know that if s; = s,, we can construct a design in blocks
of. 5,55 plots balanced in (s; — 1) replications. In case s; # 55, the
method given there provides a balanced design in (s, — 1)* replications.
We may, therefore, use a modified method in such a case.

Consider, first, GF(s,). Let the associated vectors corresponding
to A, and A, be (ag, ag, ag, . . ., ag,) and (ay, ay, . .., ag_;) rvespectively.
Taking a generator, say, (a4, a,), in GF (s,), we can form one replication
of s, sets of treatment combinations of the factors A, and Aj, each set
containing s, treatment combinations. The j-th set will obviously con-
tain those combinations of levels of A, and A, the elements of the
associated vectors corresponding to which give a sum product o, ; when
multiplied by the generator. Let us denote these sets by X, X7, Xs,

. .» X, respectively.

Proceeding, as above, we can similarly construct a design in s, plot
blocks in (s; — 1) replications by considering the two factors 4, and A,
only with associated vectors (ag, ay, ..., @, —y) ‘and (ap, o1, ..., @,3)
in GF(s,) and taking the (s, — 1) generators represented respectively
by (a;, a,), where r varies from 1 to s; — 1. This is simply an s;Xus,
design; and to extend it to the s, X 5, X 55 design, we may now replace
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the j-th level of the factor 4, in this design by the set X, defined above
containing s; combinations of levels of 4, and A,.

As an illustration of this procedure, consider the 5x3x2 demgn
The sets X; obtained would be

Xo boco; bycy
X1 ¢ bicy, bycy
X, 1 bacy, byey

These sets, when combined with the 5 levels of 4; with the help' of
GF (5), will give the following 5x3x2 design:

TaBLE VI
5X3x2 Design in 6-plot blocks

Replication 1 Replication II

Block No. .. 1 2 3 -4 5 6 7 - 8 9 10

000 100 200 300 400 000 300 100 400 200
021 121 221 321 421 021 321 121 421 221
311 411 011 111 211 411 211 o011 311 111
320 420 020 120 220 420 220 020 320 120
410 010 110 210 310 210 010 310 110 410
401 001 101 201 301 201 001 301 101 401

Replication ITI : Replication IV

Block No. .. 11 12 13 14 15 16 17 18 19 20

000 200 400 100 -300 000 400 300 200 100
021 221 421 121 321 021 421 321 221 121
111 311 011 211 411 211 111 011 411 311
120 320 020 220 420 220 120 020 420 320
310 010 210 410 110 110 010 410 310 210
301 00l 201 401 101 101 001 401 301 20t
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In the above design, the main effects and interactions confounded -
‘are 4, AB(4 d.f) and ABC. It is noticeable that AC is not confounded
. although the number of combination of levels of 4 and C is 10 and the
block size is 6. The loss of information on each of 4 d.f. of 4 is 1/6;
that on 4 d.f. of 4B is 0 and on each of the remaining 4 d.f. of AB is
5/24; and, finally, on each of 4 d.f. of ABC, the loss is 5/24 and on each
of the remaining 4 d.f. of ABC, it is 10/24. The total loss of information

is, therefore, 4, so that the design is balanced.

Designs of the type 7x3x2 (in 6-plot blocks involving 6 replica-
tions), 8 x3x 2 (in 6-plot blocks involving 7 replications), 5xX4X3 (in
12-plot blocks involving 4 replications), 7x4x3 (in 12-plot blocks
involving 6 replications), 7x5x3 (in 15-plot blocks involving 6 replica-
tions), etc., can be easily constructed by the above method.

For the construction of a four-factor design, say, SX3Xx2X2 in
12-plot blocks, we can proceed exactly as in the above manner, com-
bining first 4, and 4 and making two sets with two treatment combina-
tions in each set; combining these two sets with 4, in GF(3), making
3 new sets of 4 treatment combinations each; and finally making five
sets of 12 treatment combinations each by combining the 3 sets formed
in the last case with the factor 4,, using GF (5). The design so obtained
will be balanced in 4 replications. Obviously, the design can be repre-

. sented by the plan given above for the 5x 3x 2 design with the modifica-
tion that in place of the two levels of C, namely, 0 and 1, we have now to
put respectively two sets of levels of C and D, namely, cyd,, ¢;d; and
cody, c1dy. 1t will be found that in the design so generated, the main
effect 4 will be confounded and also the interactions’ 4B and ABCD.

The above procedure can be easily and usefully generalized for the
construction of the general asymmetrical factorial desigh s Xs,X...
XS, (where s; > 8§, = 832> ...>=8,,-and s, 8, ..., S, are all
prime. powers) in blocks of s,X...Xs, plots. Further, having
obtained such a design, we can reduce the block size one step further to

X ...Xs, by splitting all the s,X...Xs, treatment combinations
in a block into s, sets of s3Xs,X...Xs, treatment combinations
-each by the use of GF (s;) over the factors 4,4,...4,. Ithas to be
remembered that for doing this the same generator is to be used for all
the blocks.

As an illustration, the 5x3x3x2 design in blocks of 6 plots will
be presented.
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In order to avoid complete confounding over 4B, we first combine

B and C, and make the one plot sets Z,; given by '

Zi;= Dby,
where

r+t=imod3

r-+2t=jmod3
Next, we combine Z;; with D, and get the sets X

Xo 1 Zody, Zody

Xy @ Zydy, Zod,

X, 1 Zydy, Z:d;
where Z; consist of Z;; for all j. We then get a 5x3x3x2 design in
3% 3x2 plot blocks by combining the X’s with the factor 4. To get a
design in blocks of 6 plots, we simply put the treatments with the same
jin Z; in the same block, and those with separate j’s in separate blocks.
This will give a design in 4 replications. However, in order to have a
balanced design, we shall have to use four more replications obtained
by separating Z,’s with respect to i in the same way as was done with j.
The total number of replications required for balancing in this case is
(5—-1D@B—1)=28, and is, in general, (s, — 1) (s, — 1) since we use
two Galois fields, each once, and make s;5, blocks per replication.
The 5x 3x3x2 design is given in Table VII, where the loss of informa-
tion is also shown. The total loss of information is seen to be 14, or
one less than the number of blocks per replication, so that the design
is balanced. This design can be-easily generalized to sx3x3x2 where
s is a prime power.

TaBLE VII
5% 3x3X2"Design in 6-plot blocks

Level of A Combinations
Combinations Lof B, C, D
of : for four
B, C, D —— . Ty -— exactly si.milar
" | Replication I | Replication II | Replication I11I | Replication 1V replications
Block No. 1 4 710131619 22 25 28 | 31 34 37 40 43 | 46 49 52- 55 58
000 123 4/ 038142/ 02413043321 [000
2501 P AT
220 ) 9 : 3 !
200 4012320314l 502 4110432 {0
110] 204203 1] 1302 4|2 3 | 1220
221 | 540 1O 3 g
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7

No. of blocks per replication — 1.

o . Level of 4 ngmgh\;)tioofns
Combinations : f,or ,four ,
P OCf D . . exactly siplil'ar
. Replication I | Replication II | Replication III | Replication IV | CPHCaHOS
Block}No d2 5 1116|1720 23 26 <0 | 32 35 38 41 24 | 47 50 53 56 59 |
: 210 o - 210
= 02%){ 40123 4/03142| 02413 04321{6%
10 - : L a ,
1001 Ja 0123 2031430241/ 10432 [211
(1’(2)(1)} J3 40172 4203 1] 13002421043 {(l)g‘l)
Block'No |3 6 912 15|18 21 24 27 30 | 3336 30 42 45 | 48 51 54 57 60 '
120 : . . 120
2%{ 01234/ 03142[ 024713 0.4321?(2)(1)(1)
0 A
181} 4401 23[ 20314/ 30241|10432f {73
3(1)(1)} J3 4012420311302 4] 21043 -{g(l)‘l)
Total number of replications=8
Loss of information
Relative loss per d.f. Total loss
4 1/6 46
AB 5/48 5/6
AC 5/48 5/6 .
BC (I) 1 12/6
, - (Totally confounded)
BC (J) 0 0
ABC (I) 8/48 8/6
ABC (J) 5/48. 506
ABD 15/48 15/6
. ACD 15/48 15/6
2 ABC () D 15/48 15/6
ABC () D 0 0
BCD
- CD
AD
BD 0 0
B : .
C
D
Total Loss 14 =
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6. SoME FURTHER BALANCED DESIGNS
6.1. Derivation of One Balanced Design from Another

" Suppose there already exists a balanced design §;Xs5,X ... X8y

;iﬁ':.blocks of k plots (k. may be s, X 53X ... Xs,,), and we wish to derive

‘the design for the a;s, X apsX ... X @,y factorial experiment from it,
where ay, dy, ..., d, are any positive integers. Also, suppose that in
the construction of the given design s;Xs,X ... X s, we had used for
.the factor A,, an associated vector '

(Zl’ Z2’ RS ] ZSi)

* where the Z;’s are any elements, not necessarily distinct, of the Galois
field used for the purpose of generating the blocks. Then, for the
@Qnstruction‘ of the a;5,% ... Xa,s, design, we. may simply take for
“ithe A, an associated vector of the form

(Z Zos -3 Zsis ZisZoy oo s Lgis -5 Z 2o oy Zsy)

“each Z, being repeated g; times in this vector. Such associated vectors
for A, should be used in the new, design corresponding to all associated
vectors which were used for the factor 4, when the given design s, Xs,
% ...xs, was constructed. The block size in the derived design will
be a; X dyX - .. X a,Xk. The block size can be further reduced to any
extent by repeated use of suitable Galois fields. For this purpose
factorisation of a’s into prime powers may also be done. This procedure

of derivation of designs with non-prime levels gives a number of useful
designs.

As an illustration, we derive the 6x2x2 design from the 3x2x2
design. The associated vectors that we use for the 3x2x2 design are
(0, 1) for Band C and (0,0, 1); (0,1,0); (1,0, 0) for 4 to be used res-
pectively for the three replications in which balancing is achieved. All
these vectors are in GF(2). For the 6x2x2 designs, we use the same
vectors for B and C and for 4 we use (0,0, 1; 0,0,1); (0,1,0; 0,1,0)
and (1,0,0; 1,0,0) respectively for the three replications. This
gives the 62X 2 design shown in Table VIII, in which X, and X; denote
respectively the sets (byco, bica) and (b.cy, bgcy)- In this design, the

total loss of information on BC is 1/9 and that on the two confounded

d.f. of ABC is 8/9, so that the total loss is unity and the design is
balanced. :

As already mentioned, the above procedure can be used for con-
struction of-all designs irrespective of the number and type of Galois
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TaBLE VIII
6 X 2 X 2 Design in 12-plot blocks

Replication I Replication I Replication I11

Block No. . 1 2 3 4 5 6

Level of 4 : Levels of Band C
a, X X, X, X Xy X,
a X X, X, X . X, X,
a, X, X X, Xo X, X,
as X, X, X, Xy X, X,
a, X, X X, X, X; X,
as X, X, Xy X X, X,

fields utilized for getting the block size k. Thus, for a 3x 23 design
in 6-plot blocks, we use GF (2) twice with the associated vectors of 4
as given above for the 3X2? design. From this design we can, there-
fore, immediately derive the 6x 2% design simply by using the associated
vector for 4 as given above for the 6x22 design.

A similar procedure is adopted in those cases where two different
Galois fields are to be used. For example, consider the 6 x 6x 2 design
in 12-plot blocks. First, we divide the 72 treatment combinations into

two sets of 36 each by using GF (2) together with (i) a generator of the

form (1, 1, 1), {ii) the associated vector (0, 0,0, 1, 1, 1) for both 4 and
B and (0, 1) for C. At the second stage, we use GF (3) and take (0, 1, 2,
0, 1, 2) as the associated vectors of 4 and B and (0, 1) as the associated

. vector of C along with two generators (1, 1, 1) and (1, 2, 1) for gettlng

two different replications, which will provide the balanced design given

“in Table IX. In this Table ¢y and ¢; denote the two levels of C and

X;and Y;(i=0,1,..5) the sets of combinations of levels-of A and
B as given in the plan for the 6x 6 design. It can be easily seen that in
this design, the interactions 4B and ABC are confounded, the total
loss of information being respectively 2 and 3.
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TaBLE IX
6:x 6 %2 Design in 12-plot blocks

Block No. . 1 2 3 - 4 '5 6
Replication I .. X,¢ X1 Xocq X,co X, Xsco
Xooq X001 X1§'1 X5¢1 Xgcq X0y
BlockNo. .. 7 = 8 9 10 1 12
Replication IT .. Y0 Yaco Yic, Ysco Yo Ysco

Yo, Yoo Y,cq Y40 Yeer o Ya0y

The s2xt design in s ¢t plot blocks, where s is non-prime, can be
constructed by the methods of this Section as a particular case. Some
of the other useful asymmetrical designs which can be constructed in
an optimum manner by use of the above methods are 6x4, 6x4x3,
6x4x2, 6xX4%x4, 4x3x2, 6xX3x%2, 3x3x3x4, 6X3X3X2, etc.

6.2. Further Use of b.i.b.d. Property in Obtaining Confounded Designs

Almost all types of factorial designs arising in practice can be con-
structed in an optimum manner by appropriately using the methods
discussed so far. Still another method, which may be of use in certain
situations and which serves to indicate the connection between balancing
in asymmetrical factorial experiments and balanced mcomplete block
designs, will now be discussed.

Let us consider the COIlStluCthI] of a 7x2x2 design. By the use of
hypersurfaces or associated vectors, we can construct a design in 4-plot
‘blocks with 6 replications. In this design, the main effect 4 is con-
founded, which is not desirable. The design belonging to Kishen’s
series gx 2% discussed in Section (5.2), taking g =7, is to be preferred
in this case, as only the interactions BC and ABC are partially con-
‘founded in this design. However, the loss of information on BC
“in this case is 25/49. An alternative approach for obtaining an opti-
‘mum design in this case is by use of the b.ib.d. property and will now
be discussed.

Bach replication will be divided 1nto two blocks of 2¢ plots each.
Let X,and X; denote the sets (bycy, bycy) and  (bycy, bycy) of treatment
combinations respectively. Consider a single replication. Block No. 1
of this replication will contain the treatment combinations [a'] X, and
[a"] X,, where a’'and a” represent two exhaustive groups for the levels

g
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of 4 and Block No. 2 will have the complement of this. If a," and a,’
are any two levels in o/, and ,", a,” belong to a”, then obviously
@' — a) (X — Xp), (0, — ay") (X; — X,) and [(ay' -~ ﬂz) £ (a" — ay)]
(X1 — Xy), all of which belong to interaction ABC, will not be con-
founded. However, contrasts like (a1 a,") (X; — X,)-will be confounded.
The question is how to determine @’ and ¢” so that a balanced design is
obtained.

A solution to this problem may be found by cons1der1ng the possi-
bility of selecting the set @’ in the different replications in such a manner
that the levels of 4 included in ' form a balanced incomplete block
design. Since, in that case, every pair of levels of A4 will occur on equal
number of times with X, or Xi, every contrast of the type (g, + a))
(X1 — Xo), (i #j=1,2, ..., g) will be partially confounded to the same
extent. Thus, both BC and ABC will be estimable, and the design will
be a balanced arrangement.

The loss of information on BC depends on the number of levels
in the sets a’ and @”. For 7 x2x2 design, we can take 3 levels for a'
and 4 for a”, and obtain the design given in Table X.

TABLE X
7X2X2 Design in 14-plot blocks

A I I m 1 A VI VI
G XX XX XX, XX, XX, XX, XX
a XX XX, XX, XX, XX, XX, XJX,
m XX, XX, XX, XX, XX, XX, XX
&G XX, XX XX, XX, XX, XX, . XX
a XX XX XX, XY, X GX, XX
@G . XX, XX, XX XX XX, XX, XX
G XX, XX, XX, XX, XX, XX, XX,

In the above design, loss of information on BC is 1 /49 and on each
of the six d.f. of ABC is 8/49, so that the total loss of information is 1.
The design is, therefore, balanced.



102 JOURNAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATISTICS

We shall now proceed to the general case and consider a gXxp?
design, where p is an odd prime power and ¢ any integer. (It can be
easily seen that the method holds when p is of the form 2#). Consider
a generator of the type, say, (a;, a5, o), Where a, is an element of GF (p).
Let k,(i=1,2, ..,p) be any integers such that 0k, <g—1,

and 2” k; = g, so that these divide the total number of levels of 4 in

i=1

p groups, of which one or more groups may have no elements in them.
Also, suppose that for i=1,2,..., p, balanced incomplete block
designs exist with parameters v = ¢, k = k, and suitable values of b,
r; and X, and can be superimposed on one another so as to give b blocks
of g plots each. Then we take an associated vector of the form
(ag, a3 - - ., @,_y) for B and C, and b different associated vectors for 4,
one vector corresponding to each replication, such that each of the
elements in the j-th group (containing k, elements), is «;, an element of
GF (p). A balanced design in b replicates will then be obtained by
using the generator with each of the b associated vectors for 4 and the
common associated vector for B and C.

As an illustration, consider the 7x3x3 design in 21-plot blocks.

We shall consider the three sets X;, Xj, Xp of treatment combinations
for the interaction BC defined below:

Xo : boCo bacy, D1Cs

X1 ¢ bicg, bycy, bacy

Xy ¢ byro, bicy, byco
Here q = 7. Also, if we take k; =3, k, =4 and k3 =0, we shall
find that two b.i.b. designs with » = 7 exist, which are superimposable,
as shown in Table XI.

TaBLE XI
Two b.i.b. designs with v =17

B.I.B.D. No. .. 1 2
Block No.

(V.30 "GN, T o N N (O ]
A\~ NI AN W
OO\ 1
AN A WDHWR
— ) = NN
N W e ) WO B

NN AW N
L W R DD = e
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We can, therefore, form the 7 different associated vectors for A4 corres-
ponding to the 7 replications in the design. Thus, for the 5th replica-
tion, the associated vector for 4 will be (a;, a;, ap, o, o, 0y, )
when the a; are elements of GF(3). Here a;, =0 and «, =1. By
using the generator (1, 1, 1), we shall then obtain the design given in
Table XII.

TasLe XII
7%x3%x3 Design in 21-ﬁulot blocks

G .. XXX, XXX, XXXy XoXoX, XoXoX, XoXoX: XoXoX,
a .. XXX, XXX, XXX, XXX, XXX, XXX, X,X,X,

g .. XXX, XXoXi XoXoX: XoXoXi: XoXoXy XoX X XX, X,
ay . XXXy XXX, XXX, X XoiXo XoXoXi XoXiXs XoXoX,
A .. XX, XXX, XX, XXX, XXX, XXX, XXX,

4 .. XX, XXX, XXX, XoXiXe XoXoX, XoXoX, XXX, -
g, .. XX XX XXX, LY, LNX XXX, XXX .

It will be seen that in the above design, the interactions BC and ABC
are confounded.

The above procedure can be used to obtain other asymmetrical
designs also, for example, the 7x3x2 design in 14-plot blocks.

7. ANALYSIS OF BALANCED DESIGNS

Two general methods of analysing partially confounded designs,
which are balanced, will now be briefly discussed to enable the interested
reader to work out formule for analysis in the case of any specific design.

7.1. The Q; Method

In any general design where
N;, = number of plots in the ith block (i =1, ..., b),

+

N, = number of replications of the j-th treatment (j= 1,
.o ),

n; = number of times the j-th treatment occurs in the ith

block,

ij
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and where 1; denotes the effect of the j-th treatment; it is known
(Kempthorne, 1952) that the normal equatlons for estimating the ¢
can be written in the form

nt nn,
<N_,.— Z NL> t — Z <Z .&___k> I

e i
_—_Qj,j=1,2,...,t (39)
where

Since the block size and numbex of replicates of a treatment for all
the designs discussed in this paper are constant, we shall take N, =k
and N,;=r. Thus, the normal equations in (38) reduce to

A

(l — l) t— 5 (sum of ¢’s that occur in a block with ¢)) = O,

(40)

The quantities Q; are the well-known adjusted yields for a treat-
ment; and may be calculated in an easy and. straightforward way for
all demgns as indicated in the Table below

. : Total -
Total S yield -
yield of all
Treat- from Blocks in which blocks
ment all the j-th treatment . _ in which 0,=
No. replica- occurs “J-th treat- Sfk Y, — (1 k) S;.
tions : ment
occurs
1 Y, B1-1, By, ..., By, S8 'Slyk o Q1 _
2 Yy By, By, ..., BZr o - -Solk Q2 -
i Y; By, By, ..., B, ' S; S}/kA‘ O
f Yo BuyBe..wB, S . .Sk 0

The blocks B;; are not all distinct for different i and j.

i

‘_Y_Z w, T o (39)
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" Now if" ZA#; is- a-treatment Contfast'-which- we ‘wish to-estimate,

it can-be estimated by HIr 2 X0, whele 7 is- tlie relative.inforimation on

the contrast. - For obtaining the- 1elat1ve informiation, we first calculate
the expectation of Z A,0;, where-the expected value of Q;is as shown on
the. left-hand side of -equation (40).” Then, if C; is-the coefficient of 1,
in this expected- value, .we shall find -that if 2 At dS estimable: from the
full design; the value- of C,/x will- bea_ constant..C- for® all.j- Then, the
relatlve 1nformat10n reqmred s given by~ - - .- -

I=> e A e (41)

where, as above, r is the total number of replications.. Having cal-
culated /,.the sum of squares.corresponding to this contrast will be given
by . . oo ’ )

1

. ’ o S
‘I EAz(ZAQ) ' S o (42)
where for thls pulpose AS should be. + 1 —1 or zero.

" As an illustration, consider the analysis of the 432 desxgn the
plan of which is given in Table XIII. 4 S

TABLE XIII'T
Plan of 4><32 Deszgn -in - 12-plot blocks

- -

Level of B and C

Block No. .. 1 2 3 4 5 6
"Level of 4 o R
a, oLy L L Ly LT
a, o Iy L L L, L,
a2 e '[1 'Ig 10 '12 ']0 11
a; - SURED A A AR A A 4

The I’s denote as usual the well-known I sets, correspondlng to the

interaction BC (I). It will be found. that. the relative. loss of informa-

tion on the interaction BC (I) is ] * and t'hat on (a; + a, — a; — a,) BC (1)
componeiits of ABC’ interaction s . Tvyo 1ndepe_1_1@ent_ comparisons
belonging to BC(I) are L, = (az +d; ay - ag) (I; — 1) "and’ L, =
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(a3 +a;, + a + ay) (I, — 20, + ). 'The estimates of L; and L, will be
found to be [, = 4/3(Q,, — 0.)s Ly, = 4/3(Q,, — 20,, + Q,) where
0,, is the sum of the Q’s for all the nine treatment combinations con-
tained in the set a,J, (i =0, 1,2,3; I, = bycy, bycy, bycy), with similar
definitions for QI and QI,. Similarly, if L, = (a; + a, — a; — a,)
(I;— L) and Ly = (a5 + a, — a; — ap) (I, — 2, + I), we shall have
La = 4 (Qa;1, + Qa,l, — Q‘h{ Qaly — Qasl,— Qazlo“i‘QaJo'f‘anIo),
with a similar expression for L,. The sum of squares for BC (I) will be

1 1
g (sz - Qlu)z + :277 (Qx; - 2Q11 _{_ Qlo 2}
7.2. Yates’s Method

This method, which has been suggested by Yates (1937), has been
used by him and Li (1944) for the analysis of balanced asymmetrical
factorial designs. The method can be utilized for the analysis of the
balanced designs discussed in this paper. However, it is particularly
appropriate for the analysis of Kishen’s series of designs presented in
Section (5.2). For illustration, we shall now give briefly the method of
analysis of the gx 22 design in blocks of 2¢ plots, the plan for which is
shown in Table XIV.

TaBLE XIV
Plan of gx2? Design

Bll B12 B21 -B22 B31 BSZ . . Bql Ba2

Level of A4
a, X, X1 Xy Xy Xy X, X X,
a, X X X X X X . .oX X,
a, LooX X X X X X . Xy X,
A,y X, X X X, XX, . X X,

Here X, = bycy + by, X7 = byey + by

The constants to be fitted by the method of least squares are chosen
according to the following scheme:

€
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Blocks: — by, by; — by, ba; .5 — by, b,
Interaction BC: X, Xy; f,— f.
Interaction ABC: Xya;, X, 05, —i(j=0,1,2,...,9—1),
s . .
2 i! = 0.
i=0 .
Denoting the block totals in the j-th replication by B,;, B;s (j=1,2, ...,
q), we take, following Yates,
g = Bjn— By G=L2,...,9.

We also use [BC] to denote, as Yates has done, the ordinary total for
this interaction. Similarly, we use [BC.q] (j=0,1,2,...,49—1)
for the total for the interaction in the presence of a,, the contrast between
these g totals giving the interaction 4BC.

The normal equations for determining the above constants .then
come out as under:

q
4+ 4 -2 ( Z0) = 180
4gi, + 4qf + 4 (— by + by + ... + bg) = [BC.ay]
4qiy + 4gf + 4 (by — by + ... + bg) = [BC.a,]
4qi, + 4 qf + 4 (by + by + ... — b,) = [BC.a, 4]
4qb1+4(q_2)f+4(_i1+i2+ i) =—g
Agby+4(q—2Df+ 4y — s+ ... + i) =—g
4gby+ 4@ —2f+4Gh+i+ ... —i)=—g,

By solving the above equations, we obtain

Mﬂwdﬂﬁqwd+@—%é&

Taking
4 s
g [BC]+ (¢ —2) 2gi=q0Q,
i=1
we have

_ 0
I=6g—1"
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The estimate of BC in units of the yield of a single plot is given by

_ (@9
o= 8(q— 1)

The error variance of BC is given by
o2

In an unconfounded experlment the estimate of BC would be (1/2¢2) [BC]
and its error variance would be o2/q% : :

The relative information is, therefore, given by the ratio

1/' 1 _4@-1

-0 ¢ |
so that the relative loss of information on BC is given by

The sum of squares for BC is

o . (g9
16(g—1) 164%(@— 1)

as compared with (1/4¢%) [B‘C]2 in an unconfounded experiment.

The estimate of ABC is obtained in a similar manner by solution
of the normal equations given above Thus, for estimating i, (j =0, 1,
2, ...,g—1), we get

4(g*—4)i,+ 16 (g — 1) f=4qR,,
where - “
qR;=q[BC.a)+ g1+ g+ ...+ & — g+ ga+...+ 8,y
We thus obtain '

i1 (R _ B (i —
l’—4(q2——4)(R’ R)g] 0,1,2,...,g—1)

where

1

T
>

=
I
&
l
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The estimate of the interaction ABC, in units of a single plot -yield,
is given by- - :
2i,(j=10,1,2,...,9 — 1), ‘

so that we may write

q .
ABC — 2—(&2—_——4) dev (Ro; Rl) ey R!I——l)

1
=5 — 4 % (@R aRy - qR-)

as compared with (1/2¢) [BC.ay), etc., in an unconfounded experiment. '

The error variance applicable to each of these quantities is
g0 q v
G- 72

as compared with o%/g? when there is no confounding.

2

4 (2ij) =

The relative information is, therefore,

g* — 4

¢

so that the loss of information on each degree of freedom of ABC
Is given by

2

4

5'2' .

Hence the total loss of information on both the interactions is
@—2"+4@—-D_,

. > v

so that the design is balanced. The sum of squares for the interaction

ABC is given by

L(ABC) =

q .2
TE=H dev? (Ry, Ry, ..., Ryy)

= dev®(qRy, Ry, . .., Ry
4q(q__4) (./0(11 ‘qu)

8. SUMMARY

The method of finite geometries developed earlier by Bose and
Kishen for solving the problem of confounding in the general sym-
metrical factorial design has been extended to the construction of
balanced confounded asymmetrical factorial designs which were not
so far amenable to this approach. This has been achieved by using
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-curvilinear spaces or hypersurfaces and truncating the EG (m, s)
suitably. A more general method, using vectors in Galois fields, has
also been introduced and a unified theory for the construction of both
symmetrical and asymmetrical factorial designs developed. It has
been shown that, with the help of this theory, symmetrical confounded
factorial designs s, where s is not a prime number or a prime power, as
also almost all types of asymmetrical factorial designs can be constructed
in an optimum manner. Methods of deriving symmetrical and asym-
metrical factorial designs, using the b.i.b. property, have also been given,
besides methods of reducing the number of replications required for
"balancing in asymmetrical ‘designs and of deriving balanced designs of
the type a5y X ay8X ... Xa,s, from a given s;Xs,X ... Xs,, design.
Finally, two methods of analysis of balanced partially confounded
designs have been briefly discussed to enable the interested reader to
work out formula for analysis of any specific design.
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