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1. Introduction

The problem of confounding in the general symmetrical factorial
design s"\ where j is a prime positive integer or a power of prime and
m any positive integer, was solved by Bose and Kishen (1940) by repre
senting each treatment combination by a finite point of the associated
ffz-dimensional finite projective geometry PG {in, s) constructed from
the Galois field GF{^ and using linear spaces or flats represented by
linear equations in m variables. This method is not apphcable in the
construction of confounded symmetrical factorial designs s"\ where s is
not a prime number or its power, nor in obtaining confounded designs
in the general asymmetrical factorial experiment x X ... X
where s^, ..are not all equal. Special methods have, there
fore, to be applied for the construction of such designs.
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The problem of confounding in designs of the type 3"'i x 2'\ where
Wi, »J2 are any positive integers, and all cases reducible to it, has been
completely solved by Yates (1937). Using methods similar to Yates's,
Li (1944) has constructed confounded designs for the asymmetrical
factorial experiments 4x2^, 5x2^ 4x3x2, 4^x2, 4x3^ 4^x3 and
4^x2. Nair and Rao (1941, 1942) have developed a set of sufficient
combinatorial conditions which lead to the construction of confounded
designs of the general asymmetrical factorial experiment. Thompson
and Dick (1951), starting from a basic pxq design in blocks of q plots
{q <p, p being a prime number or a power of a prime), have obtained
three-factor designs with the same block size, the number of levels
being p, q or factors of q. Kishen (1958) has given balanced designs
of the type g'X2^ and'gX;*^.

The method of finite geometries has been recently extended by
Kishen and Srivastava (1959) to the construction of balanced con
founded asymmetrical factorial designs. This has been done by using
curvilinear spaces or hypersurfaces and truncating the EG (m, s) suitably.
This method has been further developed in this paper and has been
supplemented by more general methods using vectors in Galois fields.
With the help of these methods, almost all confounded asymmetrical
and symmetrical. factorial designs having optimum properties have
been constructed. The method of analysis of these designs has also
been briefly discussed. The appropriateness of the large number of
factorial designs that have now become available under experimental
situations commonly encountered will be discussed in a separate com
munication.

2. Hypersurfaces in Finite Geometries

2.1. Simple Hypersurfaces

' A hypersurface in EG (m, s) may be represented by the equation

, d>(xi, x2, . ..,xj = 0 - . (1

of which a particular case is given by the equation

flo + «i/i (^i) + cJi (xa) + ... + (xj = 0 (2

in which all the variables occur separately,

fla, ..., being any elements of GFis)

and

fi (x) - «a + flv, s-i x'-y ... (3
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where the a^'s are also elements of EG (s).

When (x) = .we get simple hypersurfaces of the type

flo + + • •• + = 0 . (4)

which we shall consider first.

The following theorem will be proved in this connection:

Theorem 2.1.—If d is a divisor of s —1 = p" — 1, then and
xs-i-d y^iii give exactly {s —l)/d + 1 distinct values when \ is variedfrom
oo to d,_i in GF (s).

Let dhQtL divisor of;?" —1. It is known that the equation x^ = \
will have exactly d roots. Let these roots be /ui, ' ... ix^. Since
d <{s— 1), there will be other elements not included in this set of /x's.
Let be such an element and let v^d = Then the equation = Pi
will be satisfied by Let .vg be another element not
included in the two sets (/x^) and (vi/ij), and let Then the roots
oix^ = ^2 will be If (j - 1) = Qd, then obviously
we will get the sets (vs/Xj), {v^-iy-d, aiid all these sets together
will exhaust the {s —1) elements (excluding zero) of GF{s). The set

(r = 0, 1, ..g - 1; vo = 1) will satisfy the equation x^ = P,
(where = !)• Hence will give q distinct values when x is varied
from ai to a3_i and these will be ^So, •••> Including ^ = 0,
we shall thus obtain {q + 1) distinct values when x = oo, a^, ..a,_i.
Further, we know that all the elements of GF{s) satisfy the equation
^pn_i ^2 Hence = 0 when x — a,, ,and equal to for all other

values of x. Since, for x = a^, ag, ..., a,_i, we get q distinct values
for x'̂ , we shall obtain q distinct values for l/x"' and, consequently, also
for x'-^jx^ or'x'^^-^. Hence the theorem.

2.2. Polynomials Yielding k Distinct Levels

The question now arises whether it is possible to get k distinct
levels by taking instead of /^(x) —x"* in equation (2), an appropriate
polynomial in x, say,

y =/W = + •• • + ' (5)

where k is any number less than s. This means that /(x) should be
such that for x = oo, ..., a^^^,f{x) provides only k distinct values,
say, ji, y^, y^- This result will be proved in the two theorems
that follow.
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Theorem 2.2.—The power-matrix

2 „ t „ s-lai (h.

as

S =
a, a.

-1 <^8-1 "•8-1

0-1

«2'-

, s-l

8-1
"s-1

= [a,'] (6)

where a/ (r, t = 0, 1, ..s — \) are all non-zero elements of GF (s),
is of rank (s — 1) and its inverse is given by

T=S-i -a-VxX

where s = p" (n > 1).

8-3
«1

ai aa

"1

, «-2
«8-l

^8-1

... a,
s-r-l s-r-l

•^J-1

a.-•8-1

"1

Let us consider the product ST. The element in the r-th row and
f-th column of (ST), where r ^ t, is given by the sum of products of ele
ments in the /--th row of S and /-th column of T, and equals

a-^-i + . . . + + . . . +

(7)
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Now, since and a, are both non-zero elements of GF(s), the quotient
(ajai) exists. Let

^ = a; ^ 1 (8)
a,

The above expression then reduces to

[oj + + 0)3 + .. . + .. + to'-i] = 0

since

(u ^ and cj'-^ = ai for all tu (# 0).

Also, for r = t the product (8) becomes

[cti + + ... + «! + - •• (z' —1)times]

= X ai X ap_i = ai.

Hence the product ST is a unit matrix. Obviously, the rank of both
6" and T is (s — 1).

Theorem 2.3.—

Let y and/(x) be defined as in (5), and let

«i

«2

A = . Here/(0)=0.

Then there exist a set of matrices such that as x is varied from to
aj_i, only (k —1)distinctvalues of y other than oq are obtained, so that
including x = 0 we have k distinct levels. Further, there will be a sub
set of this set of matrices such that the {k — 1) distinct values of y
correspond to certain given values of x, say ...,

The proof is simple. Consider the product SA and let Y = SA.
Obviously, since S is of rank (s — 1), Y exists and equals

Y =

fllXai + + • • •

fllXa^ -F 03X0^^ + • • • -f- a,_iXa/-i =

•,

fliXa^-i-l-aaXaVi + • • _A-i _

say

(9)
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where yi=f(xd. Now we want only (k — 1) distinct elements in the
last matrixin (9). This may be done in [(j—1) !/(A:—1)! (5—/c)!]
ways, corresponding to each of which there will exist a surface giving
k distinct values. The polynomials yielding distinct fixed values
Vi^, •••, against fixed levels of x = can be
obtained in {ky-^ ways. The corresponding set of surfaces may Idc
called the/c-th;level isomorphic set of surfaces;: and the corresponding
set of A matrices will be given by ^4 = TY, where the {k — 1) elernents
in Y are fixed and the rest may vary from oq to

3. Asymmetrical Confounded Designs

Let us now consider equation (4). If A-, is a factor which is
included in.equation (4) as the contribution made by it in the equa
tion can take only 5; = {s — 1)!^+ 1 distinct values, Si being thus less
than s, assuniing that is a divisor of (s —1). .Let the Si distinct values
of Xi''' correspond inorder to the values of Xj equal to oq, ai, a,-^,
ai,_2. This means in effect that equation (4) will behave as if the j-th
factor had only distinct levels, namely,

(0, 1, A, k, • Ava) (10)

In the context of asymmetrical designs, this suggests that the levels
of Xj other than those given by (10) be left out of consideration and the
Euclidean Geometry EGlm,s) containing j'" points be-_so truncated
that all the treatment combinations in which the above levels of Af
occur are cut out. Such a truncation may be done with respect to any
number of factors, as required.

Consider iiow m factors A^, A2, •. A,„ at levels ' ^2, ...,
respectively, where is a prime number and for all /"> 1.
As shown in Section (2.2), it is possible to have St equal to any number
less than Si by taking a suitable polynomial of x in GF(si). Here for
simplicity, we shall consider the case where the factors A2, A3, ..., A,„
corresponds- to x '̂'̂ ..., x,,''". respectively. . Suppose now we
desire to confound an m-factor interaction. We then take the pencil
of hypersurfaces represented by

+ WhXz' + + . •• + = a,, (II)
where r = 0, 1, , (s — I), in the suitably truncated EG(m,s^),
it being presumed that x^ varies from to and x^ (i # 1) varies
over oq, oj, aj^, aj,^, ..., We may now proceed to divide the
SiXj'2X ... treatment combinations in 5^ blocks of S2XS3X ...
XSn plots each with the help of the pencil (11). It can be shown that
the pencil (11) will divide the treatment combinations symmetrically
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into Si sets. For, if Xjt^, x„„,„ is any combination
of the levels of the factors A^, A^, ..Aj, ..A„,' the expression
within brackets on the L;H;S. of equation (11) will have a fixed value,
say, A (fa, tj,-..., tj in GF(si). If is the value of such
that + A = a, {r = 0, 1, 2, ..J - 1), then the treatment
combination (xi^a, x^^^, x„„J will appear in the a-th block. Thus,
all the combinations of the levels of Xa, x^, ..., x,,, will appear
with different levels of x^ in different blocks. Since x^ can have
values, we shall get blocks of equal size, each block containing all the
jgXJaX ... XJ,,, combinations of A^,, A^, ..., A,„.

It appears that in the replication provided by a pencil of hyper-
surfaces, the interactions confounded may, belong to two types. The
interaction corresponding to equation (11) which generates the repli
cation is always partially confounded. This is, so to say, the deliberately
confounded interaction. However, some of the interactions may get
partially confounded automatically owing to the fact that the number
of combinations of levels of factors to which they relate is not equal to,
or a factor of, the block size. For example, in the 4x2x2 design in
blocks of 4 plots, our pencil will partially confound the ABC interaction
in a particular replication, and the AB and AC interactions will also be
partially confounded since there are 8 combinations of levels of AB
and AC and the block size is only 4. Thus, in the replication corres
ponding to equation (11), the main effect A and all the interactions in
which it enters will be partially confounded if S2,> Si(i = 2, .. .,m).

For obtaining a design balanced with respect to all main effects
and interactions, we may have to take all the replications obtained by
varying the aj^ (7= 2, 3, ..., m) over oj, a^, ..., a,_i. Varying only
a particular a,, (j fixed) from oi to a„_i will mean, in a sense, balance
over a particular contrast of all" factors other than Aj.

When there are at least two factors at levels each, no main effect
will be partially confounded. The interaction AxA2 will be partially
confounded if only there is no third factor at levels, and so on. In
the former case, varying 4 in a,,^ from 1 to (j^ — 1) we shall obtain the
(si —1) replications required for balancing the A1A2 interaction with
respect to the rest of the factors.

4. Illustrative Examples

4.1. The 3x3x2 Design in Blocks'of 6 Plots

Let the three factors be ^(0, 1, 2), 5(0, 1, 2) and C(0, 1). In
EG (3, 3), we truncate all the points with Xg = 2, since x^ = 0, 1, 1 for
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X = 0, 1, 2 and x = 2 does not give a distinct value for x^. The
truncated geometry will have 18 points left corresponding to the 18
treatment combinations. The balanced design in two replications,
confounding AB (J) and ABC (J), is generated by the pencils of hyper-
surfaces

Xi + Xa + = 0, 1, 2 I
+ Xa + 2x3^ = 0, 1, 2 J

For obtaining complete balance on AB, we may take two more
replications generated by the two pencils

Xi + 2x2 + '̂3^ = 0, 1, 2 I
Xi + 2x2 + 2x3^ = 0, 1, 2 J

which, by themselves, provide a balanced design partially confounding
AB (/) and ABC (/).

The above can be easily generalized to obtain 3"-ix2 confounded,
designs in blocks of 3"-^x2 plots.

4.2. The s^xq Design in Blocks of sq Plots, Balanced in (s — 1) Repli
cations; where s > q

Let the q levels be obtained by taking the polynomial /(x). Let
the factors be A (0, 1, ..j — 1), -B (0, 1, ..., j — 1) and C(0, 1, 2,
...,^—1). Let us consider the replication given by the pencil

Xi + aj^Xa + a.-^/Cxg) = a^(r = 0,1, ..., J - 1; /g, isfixed)
(14)

which will partially confound the AB and ABC interactions. The
(s —1) replications obtained by allowing i^to vary from 1 to (j —1)
will give a balanced set. For complete balancing with respect to AB,
jg also is to be varied from 1 to (j —1), giving the full set of (s —1)^
replications.

Some of the more useful designs derived from this series are 3^x2,
4^x2, 5^x2, Vx2, 8^x2, 4^x3 and 5^x3 in blocks of 6, 8, 10, 14,
16, 12 and 15 plots respectively. As an illustration, the design
5x5x3 in 15 plot blocks is given in Table I, where the c,'s denote the
level of the factor C, and X/& denote the sets of AB :

Xq : aabo, aj}^, a^b^, asb2,

a^jbi, Oibf), a^b^, ajy^



L

CONFOUNDING IN ASYMMETRICAL & SYMMETRICAL FACTORIAL DESIGNS 81.

(i(jb2, ci^I, ciibg, aa

-^3 • ^0^3> ®1^2j ®2^1> <^3^0;

X^'. Clfjb^, Clib^, ^2^2) ^3^15 ^4^0

The relative loss of information in an s^Xq design, on each of the
{s - 1) confounded d.f. of AB is {s - q)lq{s - 1) and on each of the
{s —l)iq— 1) confounded d.f. of ABC, it is sj{q (j —1)}.

Table I

5x5x3 balanced design in 15 plot blocks involving four replications

Replication I Replication II

Block No. 1 2 3 4 5 6 7 8 9 10

X^Cq XiCf) X2C0 XsCfj XiCQ X^Cq X2C0 X^Cq X^C(,

X,c, XgCi ^2^1 XsCi X3CI ^^4^1 XqCi XiCi X2C1

X2C2 X^C2 XqC2 X1C2 X2C2 X,C2 X2C2 X^C2 X^C2 X0C2

Replication III Replication IV

Block No. 11 12 13 14 15 16 17 18 19 20

XlCf) X2C0 XgCg ^o^'o -^1^0 X2Cf) X^Cfj ^4^0

X^c-j^ X3C1 X^Ci XqCi X2C1 X'̂ Ci X^Ci

X.1C2 X{iC2 X^C2 -X'2^2 ^3^2 .^2^2 X^c.2 Xi^C2 XqCo Xic.,

The above can be easily generalized to the corresponding s"'-''Xq'
designs in blocks of Xq' plots, e.g., 3x3x2x2 design in 12 plot
blocks and 4x4x2x2 in 16 plot blocks.

4.3. sxqixqa Design in Blocks of Plots, (s > qi, qa), Balanced
in (s — 1)^ Replications

In this design, the main effect A is confounded partially.

Many useful designs, e.g., sx3x2, sx4x2, sx2x2, .sx4x3,
5x5x2, etc. in blocks of plots 6, 8, 4, 12 and 10 may be derived from
this general design. If ^ > q^q^, balancing may be achieved in —1)
replications only.

6
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4.4. 4x3x2x2 Design in Blocks of 12 Plots

Consider GF (2^) with minimum -function = x + 1 and elements
ao, ai = 1, a2 = x, as = x^ = x-f\. Denote the factors by
A (0, 1, 2, 3), B (0, 1, 2), C (0, 1), D (0, 1). The functions f{x) corres
ponding to C and D may be taken as Xg® and x/ respectively. For B,
let us choose f(x) = ag, a^, ag and oq respectively corresponding to
X= tto, a^, ag and ag. Then, from (9), we have

ai
0

0-2" ag^ ai ai + as

II

!

0-2 ag X ag = • aj + ttattg = ao

ai ai ao tti + ag ao

(15)

Hence /(xa) = a^x^, + ajXa'.

The pencil which confounds ABCD may be represented by the equation

+ (ogXa + + [Xg'' + (r = 0, 1, 2) (16)

in the truncated geometry EG (4, 4). The replication generated also
partially confounds the interaction AC, AD, ACD, ABC and ABD.
A design in 3 replications providing balance over ^C and AD is given
in Table II.

Table II .

4x3x2x2 Balanced design in 12plot blocks, involving
three replications

Level of C, D

Replication I II III

Block No. ... 1 2 3 4 5 6 7 . 8 9 10 . 11 12

Level of A,B

00 00 10 11 01 00 6i 10 11 .00 11 01 10

01 10 00 01 11 01 00 11 10 11 00 10 01

02- 01 11 10 00 11 10 01 00 10 01 11 00

10 10 00 01 11 01 00. 11 10 11 00 10 01

11 00 10 11 01 00 01 10 11 00 11 01 10

12 11 01 00 10 10 11 00 01 01 10 00 11

20 11 01 00 10 10 11 00 01 01 10 00 11

21 01 11 10 00 11 10 01 00 10 01 11 00

22 10 00 01 11 01 00 11 10 11 00 10 01

30 01 11 10 00 11 10 01 00 10 01 11 00

31, 11 01 00 10 . 10 11 00 01 01 10 00 11

32 00 10 11 01 00 01 10 11 00 11 01 .10
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It has to be noted that the coefficients of and have been kept
different in (16). This has to be done as otherwise one degree of free
dom belonging to the interaction AB will also be totally confounded.
The reason is that if their coefiicients are not distinct, Xg® and when
combined together, will not generate all the elements of GFiV').

4.5. SjL XSjXSg X ... Xs„, Design where Sj are equal to, or are Powers of,
a Prime Number p

As a special case of this design, let us consider the 4x 2x 2 design
in blocks of 4 plots. Denote the factors by A (0, 1, 2, 3), 5(0, 1) and
C(0,1). A suitable pencil confounding the ABC interaction is repre
sented by

Xi + (x2^ + ~ 2, 3; ii fixed) (17)

This also partially confounds the ^45 and interactions. A design
in 3 replications is obtained by taking j'l = 1,2 and 3 and is shown in
Table III below, in which the confounded interactions are also given.

Table III

4x2x2 Balanced design in 4 plot blocks

Replication I II III

Block No. .. 1 2 3 4 1 2 3 4 1 2 3 4

000 100 200 300 000 100 200 300 000 100 200 300

110 010 310 210 111 Oil 311 211 101 001 301 201

201 301 001 101 210 310 010 110 211 311 Oil 111

311 211 111 Oil 301 201 101 001 310 210 110 010

Confounded A'C, A"'B A"'C, A"B A'B, A'C

Interactions A"BC A'BC A'-BC

, Here A' = (flg + a^- a^- Oq), A" = (og —a^- 0^ + a^) and A'" =
(flg - fla + - ffo)-

The loss of information on each of the AB, AC and ABC inter
actions is 1/3. The above design can be immediately extended to 4x2"
designs in blocks of 2" plots, balanced in 3 replications, as above.
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Designs of the type 9x3x3 in blocks of 9 plots, 16x4x4 in
blocks of 16 plots, 8x2x2x2 in blocks of 8 plots, 8x4x2 in blocks
of 8 plots, etc., can also be constructed by similar methods. These are
balanced in 8, 15, 7 and 7 replications respectively. These confounded
designs are amenable to arrangement in quasi-Latin squares.

4.6. Si XSaX S3X ... Xs,„ Design in Blocks of SiX S3X S4X ... Xs,„ plots
where s, is afactor o/s^XS3 XS4 X. .. Xs,„ andis a Prime Number
or a Power of a Prime, and Sg^ > Sj (i ^7^ 2)

Consider GFis^^). By Theorem 2.2, we can obtain Si distinct
levels from a suitable polynomial in GF{s^^). Then a pencil of hyper-
surfaces will divide the total number of treatment combinations into
52^ blocks, each block containing (l/jg) (J1XJ3X J4X ... X plots.
We may then- suitably combine sets of blocks out of these blocks
to get ^2 iiew blocks, each containing sj^xs^x ... xs^ plots.

4.7. S^XS4XS5...XJ„ Design in s^ Blocks of sXS4 XS5 X... Xs„ Plots
each

Here 3 factors have been, taken at s levels so that the number of
plots in each of the blocks may still remain a multiple of j so as to
keep all the main effects unconfounded. As in the symmetrical case
of (j"", s'̂ ), we have here to confound two pencils simultaneously.

As an illustration, let us take the 5^x2 design in blocks of 10 plots
each.

Let us take the pencils

+ 2x2 + 2.^4^ = 0, 1, 2, 3, 4

and } (18)
X-L + Xs + = 0, 1, 2, 3, 4

in the truncated EG (4, 5). Balance on any particular contrast belong
ing to the first three factors A, B and C can be achieved in 4 replications.

A generalization of the above procedure leads to the construction
of balanced confounded designs of the type s'"^ X Xs^-^ X ... Xs^"
in blocks of s"''--''xs^^xs^'x .. .Xs^' plots each where k <m^;
balancing being achieved in (s — 1) replications only, if /c < (j — 1).

4.8. Method of Cutting out from an s'" Design

Suppose' we have got an s'" design in s'' blocks of s'"-^ plots each,
where s. is. a prime power. Then it can be easily seen, that we can
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derive a design of the type s''xsi,.^ixs,,^.2x .. .Xs,„ where .
from it by cutting out in all blocks all the treatment combinations which
contain any out of the last (s —sj levels of the factor A^, i varying from
/c + 1 to in. This method is essentially equivalent to cutting out points
lying on the (m — l)-flats Xi= a, [;• varying from Si to (5 — 1);
z= /c + 1, ..m] from a set of pencils of linear {m — l)-flats giving
the confounded symmetrical design. The designs obtained by this
method will, however, all correspond to simple confounding to be de
scribed in the next section, and are obviously a particular case of the
designs obtainable from hypersurfaces. However, as would appear
from the foregoing sections, the hypersurfaces provide a natural repre
sentation of all asymmetrical designs which are derivable by the above
method of cutting.

5. Use of Galois Fields in Confounding in Factorial Designs

Let us now examine the role played by Galois iields and finite
geometries in the construction of confounded factorial designs. In
the case of confounding in symmetrical designs with s'" treatment com
binations, the number ^ enters both as the level of each of the m factors
and is also used in the pencils in finite geometries in splitting up the
treatment combinations symmetrically into s parts. We have seen,
however, that with truncated geometries, the levels of each factor may
hot be the same and still the use of GF (s) leads us to .y symmetrical
partitions. If the total number of treatment combinations is v and we
want s blocks in which the treatments occur symmetrically, evidently
5 should firstly be a factor of v, which means that at least one factor is
to be at 5 levels. As we have shown in Section 3, we can, in that case,
put all the treatments v into a sort of correspondence with the s elements
of GF{s). The construction of a confounded factorial design necessarily
involves the partitioning of treatments into j parts, i.e., putting the
V objects into correspondence with the s blocks. The GF(s) is thus
simply a mathematical device for effecting such a correspondence.

The above suggests that we may construct the {s'", i'-) design directly
from This procedure should appear to be more natural than
the ordinary one inasmuch as the blocks required correspond one-to-
one to the elements

ao, tti, aa, a^, . . ., a/_2, of GF {s'').

It also appears that the use of GF{s) to group the factors even when all
of them are not at ^ levels may also be possible and may lead us to
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interesting designs since the groupings made by GF (s) are in a sense
symmetrical.

5.1. General Theory for Symmetrical Case

- For developing the above approach, the use of vectors in Galois
fields will be made. We first define the basic terminology.

{a) Any set of n elements in GF{s) will be called an n-vector in
GF{s).

{b) Corresponding to a factor A at k levels, the vector (0, 1, 2, ...,
A— 1) in the real field will be called the Level Vector of A.

(c) Corresponding to the level vector of A, there is an Associated
Vector (/3o, of A, where the j8's are all elements of
GF{s), not necessarily distinct.

(d) Any vector in GF (s) used to generate the required design will
be called a Generator. With m factors, the generator will be an
m-vector in GF(s).

(e) The sum S and product F of two vectors (a^, ..., aj and
(Z>i, &2, ..., &,„) in GF{s) will be 5 = K + a^ + b^, + b^
and P = (aA> a„bj while their product sum will be
Q — ~1~ ~l" • • • ~l~

(/) If the elements of the Associated Vector of a factor correspond
one-to-one to the elements of the "Level Vector, all the confounded inter

actions in which the factor enters may be said to be simply confounded
where this is not the case the confounding is said to be non-simple.

With respect to a particular generator, the set of all treatment
vectors, which we may call treatment space, may be divided into j parts,
the yth part containing those treatment vectors the associated vectors
corresponding to which give a product sum when multiplied by the
generator. Here a^. is the (;'+ l)-th element of GF{s). Since the usual
arrangement of the s elements of GF {s) in the order oq = 0, = 1,
tta = 0, ..., a,- = 6'-'̂ , ..., as_i = 6^-^ presents difficulties in the addi
tion of elements when n ^\{s = p"), it will be convenient to have
a rearra.nged form for the elements of GF{s). In GF{s = p"), where
^ is a prime number, the minimum function is of order n and of the
form

6" = H-0 + + ^2^^ + . . . + (24)

where /xj are elements of GF(p). Hence any element of GF (p") may be
represented in the form

^0 + gJ + + ... + gn-iO"-' (25)
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where the gj are elements of GF{p). Further, the elements of GF{p")
will be so arranged that (25) is the (1 + go + S\P + g^p'̂ + ... +
g„_i/7"-i)-th element, where the g's and p will be taken as belonging to
the real field. Thus, in this rearranged form for the elements of
GF{V), 0 + 2 will be the (1 + 2 + lx3)-th, or the 6th element.

For simplicity, let us consider (3®, 3) design with blocks of 9 plots.
Here we require 3 partitions. Hence we use Gf (3). The level vectors
are given by A (0, 1, 2), B (0, 1, 2) and C (0, 1, 2). Let us have simple
confounding so that the effect vectors are (0, 1,2) or (0,2, 1). Now
consider the different forms of generators. A generator like (1, 0, 0)
will divide the treatment space into 3 parts, the j-th part containing all
the treatment vectors containing the level Oj of A, which implies that
the main effect is confounded. Considering the generator (1,1,0),
we find that the y-th part contains each level of C three times with each
level of A or B, which implies that only the factor C does not enter the
confounded interactions. Similarly, it will be found that the generator
(1, 1, 1) corresponds to, the ABC interaction and corresponds to the
pencil Xi + Xa + X3 = 0, 1, 2 in £6(3,3) with the usual approach.
Consider now (3^ 32) design, in which case we use GF (3^) to get
9 blocks. A general element of GF (32) is (rd + s), where /•, j = 0, 1, 2.
Let the effect vector be (0, 1, 2) or (0, 2, 1), as above. It will be found
that factor or factors which correspond to a zero element in the
generator are not confounded. Also, the generator should contain at
least one element involving 9 and one element out of 0, lor 2;
otherwise, since we are working with GF(3^) but with factors at only
3 levels, the generator will not divide the treatment space into 9 equal
parts. Now consider a generator of the type

+ A, vd, ij.) (26)

This vector can be written as

0(^, v,0) + (A,0, fx) (27)

Suppose that the treatment vectors in a particular block have
(rd + s) as their product sum with (26). Then it is clear that they would
give r and s respectively as products with the two component vectors of
(27). If Ii, k, m-i^, are any elements of GF{s), the same block would
give {(Ij)- + m^s) S+ {kr + m^s)] as product with the generator

{iJit + '"1^) d + ^ + m^X, lj_v9 + lo^v, fid + (28)

and will be the block No. [3 + m^s) + (/a'" + m^s) + 1] of the same
replicate, if the generator (28) is used. The two generators (26) and
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(28) are equivalent. The close connection with the usual theory is evi
dent, the two component vectors in (27) being the two confounded pen
cils represented by

+ vxz = 0, 1, 2

Axi + fiXg = 0, 1, 2.

It is evident that in order that no main effect is confounded, all
the elements in the generator (26) should be distinct.

Consider now a p'" design in p" blocks of p'"-'' plots each, where
/; is a prime number. Here we require partitions and, therefore, use
GF{p''). The level vector corresponding to each factor is (0, 1, 2, ..
p — 1). We have {p — 1) distinct associated vectors for simple con
founding. Let us use each one for one replication, getting {p —\)
replications in all. Now suppose we want to confound the k
independent interactions represented by the k equations

or

+ aaiX'a + • • • +

+ aaaXa + . . . +

"•ikX-i + ajj-Xg + . . . +

O'l. '"2, ..= 0, 1, 1).

To the above corresponds the generator

(an + -j- + . . . +

^21 •^22^ + + . • +

"ml + + • • • +

( i .. ., i a^,e>-A
M=1 i = i i=i J

Then the generator

/1 J. h-i k k—1 k \
fz z- S S
Vi=0 4=1 - i=o 1=1 i=o i=i /

(29)

(30)

(31)
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where y^./s are any elements of GF{p), gives the same replication (for
all j) as (31) under the condition that the k vectors represented by

^ fc , k k \
( 2 2 yiflii, —, 2 ), (32)
.\t = l 1= 1 1= 1 /

j varying from 0 to (^ —1), are independent. This means that the
vector space of rank k, with the basis given by (ajy, a^j, ..a^j),
j varying from 1 to k, is confounded, which corresponds to the principle
of generalised interaction enunciated in this general case by Bose and
Kishen.

It may be said that in a sense the generator (30) integrates the inter
actions confounded by the bundle of k pencils corresponding to (29)
just as, for example, the moment generating function of a distribution
integrates its moments.

In the case of an j"' design in blocks, we can proceed in the same
manner as above, remembering that the aj/s are now elements of GF {s)
and not of GF(p).

5.2. Kishen's Series of qx2^ and qxp^ Designs, q being any Integer
and p an Odd Prime Power

The two series of designs given by Kishen (1958) are typical
examples of non-simple confounding defined earlier. In the
series, the 3 factors are A (0, 1, 2, ..., q — 1), B{0, 1) arid C (0, 1).
Since we want a design in 2q plot blocks, we use GF(2). If (1, 1, 1)
is taken as the generator, B (0, 1) and C (0, 1) the associated vectors
for B and C, it can be easily seen that the q replications required are
obtained by taking the q associated vectors for A represented by the
q unit (/-vectors in OF{2), namely,

(1,0,0, ...,0); (0,1,0, ...,0); (0,0,1,0, ...,0); ...
(0,0,0, ...,0, 1) (33)

For the qXp'̂ design, we use GF(p), and the associated vectors
of B and C are respectively

5(0, 1, 2, .. .,J7 - 1) and C(0, 1, 2, 1).

The set of associated vectors corresponding to A are the ^-vectors in
GF(p) represented by

(tti, ap, ttp, . . ., Oq) , (oq, ttj, Oq, . . ., Ofl) ; . . . ; (oq, Oq, . . ., Oq, Oj)
(ttg, Oq, ttfl, . . ., Ofl); (ag, a2, ag, . . ., Oq) ; . . . ; (uq, Og, . . ., ao, Oj)

("(p-l)/3' •••) "0)5 ("o; ®(p-l)/2> "oi •••; "o) >•••j ("oi "o> ••-j (34)
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It can be seen that if the vectors in (33) and each of the {p — l)/2
sets of vectors in (34) are arranged in the form of a square, as under.

1 0 0

0 1 0

0 0 1

0 0 0

0

0

0

1

(35)

the element 1 of GF(2) falls once in each row and once in each column.
Comparing it with the latin square

A

^2 ^3

A, A,

n

A„-2

A2 A^ A^ ... ^

we find that here the letter A has been replaced by 1 and the others by 0.

This makes possible a generalization of this approach for construc
tion of gx2^ and qxp^ designs with less loss of information on BC.
For example, if A^, A2, At in the second square are replaced by 1
and Af+i, At+2, A^ by 0, and the q rows of the resulting square are
taken as associated vectors of A, we shall get a. qx2^ design in 2q plot
blocks, the loss of information on BC being (q —Ityjq^. A similar
approach with the qxp^ series can be made and can be utilized to
construct the 5x3x3 design in 15 plot blocks.

5.3. Certain Factorial Designs Using b.i.b. Property

Let j be a prime power and a any integer. Let there be two factors
A and B, each at aXj levels. We can divide the total number of a'^s^
treatment combinations into axs blocks of axj plots each in such a
way that no main effect is confounded. Suppose these axs blocks
confounding (aj — 1) d.f. belonging to interaction AB are
Zj, X2, ..., Now, suppose, a balanced incomplete block design
(b.i.b.d.) exists with v = as, and block size k < v. Then immediately
we get a confounded factorial design asxasm. blocks of size kas.

(36)

Go
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partially confounding {as —1) d.f. of interaction AB. Preferably k
should be small. In particular, we can always have k = l, the b.i.b.d.
in this case being v = as, b = as (as —l)/2, k = 2,, r = (as —1),
A= 1, giving asxas design in las plot blocks.

. Alternatively, the b.i.b.d., v = as, b = s(as —1), k = a, r =
(as —1), A= a— 1, can also be considered if one exists.

When a = 2 and 5 = 3, we get the b.i.b.d. v = 6, b = \5, k = 2,
r = 5 and A= 1, which gives the 6x6 design in 12 plot blocks shown
below.

Table IV

6x6 Balanced design in \2-plot blocks

Replication , , I II III IV V

Block No. .. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

^3 ^3 ^3 ^4

^2 ^4 ^3 ^4 ^6 ^5 ^5 Z4 ^6 ^6 ^3 ^5

Here the treatment combinations included in the set are those which
satisfy the equation

A'l + Xa = / mod6 (37)
(/ = 0, 1, 2, 3, 4, 5).

It will be seen that this method gives designs in which the total loss
of information due to confounding is less than in the designs obtained
by using the axs sets X^, •• •, X„, as blocks.

The method is particularly useful in symmetrical or asymmetrical
designs in which the number of levels of each factor is not large, and
the block size can be increased without appreciable increase in error.
For example, we can construct a 5x5 factorial design in 10 plot blocks
in 4 replications by taking a b.i.b.d. with u = 5, ft = 10, k = 2, r = 4
and A.= 1. Similarly, we can construct a. 1x4 factorial design in
12 plot blocks in 3 replications by considering the b.i.b.d., v = 1, b = 1,
k = 3, r = 3 and A= 1, on the 7 sets obtained by using GF(7) along
with the associated vectors A(0, 1,2, ..., 6), B (0, 1, 2, 3) and the gene
rator say (p, q) where p, q are non-zero elements. It is noticeable that
by this procedure the number of replications required for balancing is
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only 3 as against 6 replicatioiis in the design derivable directly from tlie
Galois field with block of 4 plots.

5-4. (Pi, Pa)'" Designs in Blocks 'Plots, pi, p^ being any
Prime Powers and r^, ^ m.

The procedure is simple. First, we form blocks by consider
ing a particular generator the elements of which belong to Gf (p/i).
The associated vector for each factor may be such that it is divisible
into p2 sets of elements, each set containing p-^ distinct elements belong
ing to GF (pi). At the next stage, we similarly consider GF (p/O for
further dividing each block, for each of which we take the same
generator. The associated vector for each factor in this case consists
of p^ distinct elements belonging to GF{p^, one element corresponding
to all elements in one of the sets out of the p^ sets defined above for the
earlier associated vector. The procedure will be illustrated by deriving
a 6x6 design in 6 plot blocks.

The associated vectors for A and B at the first stage may be taken
as (0,1,2,0,1,2), and the generator as (1,1). We use (?F(3) since
6 = 3x2. At the second stage, we use GF(2) with the generator (1, 1)
and associated vector for both A and}5 as (0, 0, 0, 1, 1, 1). This gives
a set of 6 blocks for the first replication. To this we may add another
replication obtained by taking (1, 2) as the generator at the first stage.
The two replications together provide a balanced design, which is given
in Table V.

Table V

6x6 Design in 6-plot blocks

Replication

Blocks

I II

^0 ^2 ^3 ^4 ^5 >^0 >^1 Yt n >^4 n

00 01 02 03 04 05 00 01 02 03 04 05

12 10 11 15 13 . 14 11 12 10 14 15 13

21 22 20 24 25 23 22 20 21 25 23 24

33 34 35 30 31 32 33 34 35 30 31 32

45 43 44 42 40 41 44 45 43 41 42 40

54 55 53 51 52 50 55 53 54 52 50 51
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In this design the single degree of freedom for AB corresponding to
the contrast (og + ^4 + fls —«2 —%~^o) (^5 + bi + —b^— b^
is totally confounded in both the replications. Further, 8 more degrees
of freedom belonging to AB are partially confounded, on which the loss
of information is The total loss of information is 1 + 8x-j = 5,

(• which is equal to the number of degrees of freedom confounded in each
I replicate so that the design is a balanced arrangement.

Balancing for the case m = 2 would be achieved in (pi —1) —1)
replications, which would be obtained by varying the second element

'•w of the first stage generator over —1) non-null elements of GF(p:)
and further for each of these cases by varying the second element of the
second stage generator over the (p^— 1) non-null elements of GF{p^.
Balanced designs of the type .. •,Pi)'" in blocks of Pi"~'^,
...,p^"-'k plots, where i\, can be constructed in a
similar manner in {p-^ -\){p^-\) ... {p„ - 1) replications (provided
;-y < - 1; ; = 1, 2, ..., k).

5.5. Balanced Asymmetrical Designs with Reduced Number of Replica
tions

Firstly, let us consider three-factor designs of the type s^xs^Xs^
where both s^ and jg are prime powers. Let s^ '̂̂ s^:^ s^. From
Section 4, we know that if 5^ = s^, we can construct a design in blocks
of. S2S3 plots balanced in —1) replications. In case s^ ^ ^2= th®
method given there provides a balanced design in —1)^ replications.
We may, therefore, use a modified method in such a case.

Consider, first, GFis^). Let the associated vectors corresponding
to A2 and A3 be (oq, a^, a^, ..., and (ao, a^, ..., respectively.
Taking a generator, say, (a^, aj), in GF (s^), we can form one replication
of ^2 sets of treatment combinations of the factors A^ and As, each set
containing ^3 treatment combinations. The j-th set will obviously con
tain those combinations of levels of A2 and A^, the elements of the

; i . associated vectors corresponding to which give a sum product when
multiplied by the generator. Let us denote these sets by Xg, Xi, Zg,
..., respectively.

Proceeding, as above, we can similarly construct a design in
blocks in — 1) replications by considering the two factors A^ and A^
only with associated vectors (oq, a^, ..., and (0^, a^, ..., a,^_^
in GF{s^ and taking the (^i — 1) generators represented respectively

1: by (tti, ttj), where r varies from 1 to — L This is simply an
I design; and to extend it to the j^x design, we may now replace
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the y-th level of the factor A2 in this design by the set Xj defined above
containing ^3 combinations of levels of A2 and A^.

As an illustration of this procedure, consider the 5x3x2 design.
The sets Xj obtained would be

^0 • ^O^Oj ^2^1
Xi : biCg, bgCi

X2 '• b^CQ, b^Cx

These sets, when combined with the 5 levels of A-^^ with the help of
GF{5), will give the following 5x3x2 design:

Table VI

5x3x2 Design in 6-plot blocks

Replication I Replication II

Block No. . . 1 2 3 4 5 6 7 8 9 10

000 100 200 300 400 000 300 100 400 200

021 121 221 321 421 021 321 121 421 221

311 411 Oil 111 211 411 211 Oil 311 111

320 420 020 120 220 420 220 020 320 120

410 010 110 210 310 210 010 310 no 410

401 001 101 201 301 201 001 301 101 401

Replication III Replication IV

Block No. . . 11 12 13 14 15 16 17 18 19 20

000 200 400 100 300 000 400 300 200 100

021 221 421 121 321 021 421 321 221 121

111 311 Oil 211 411 211 111 Oil 411 311

120 320 020 220 420 220 120 020 420 320

310 010 210 410 110 110 010 410 310 210

301 001 201 401 101 101 001 401 301 201

e* •
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In the above design, the main effects and interactions confounded
are A, AB(4 d.f.) and ABC. It is noticeable that AC is not confounded
although the number of combination of levels of A and C is 10 and the
block size is 6. The loss of information on each of 4 d.f. of ^ is 1/6;
that on 4 d.f. of AB is 0 and on each of the remaining 4 d.f. of AB is
5/24; and, finally, on each of 4 d.f. of ABC, the loss is 5/24 and on each
of the remaining4 d.f. of ABC, it is 10/24. The total loss of information
is, therefore, 4, so that the design is balanced.

Designs of the type 7x3x2 (in 6-plot blocks involving 6 replica
tions), 8x3x2 (in 6-plot blocks involving 7 replications), '5x4x3 (in
12-plot blocks involving 4 replications), 7x4x3 (in 12-plot blocks
involving 6 replications), 7x5x3 (in 15-plot blocks involving 6 replica
tions), etc., can be easily constructed by the above method.

For the construction of a four-factor design, say, 5x3x2x2 in
12-plot blocks, we can proceed exactly as in the above manner, com
bining first Ai and A^ and making two sets with two treatment combina
tions in each set; combining these two sets with A^ in Gf(3), making
3 new sets of 4 treatment combinations each; and finally making five
sets of 12 treatment combinations each by combining the 3 sets formed
in the last case with the factor A^, using GF{5). The design so obtained
will be balanced in 4 replications. Obviously, the design can be repre
sented by the plan given above for the 5 X3 X2 design with the modifica
tion that in place of the two levels of C, namely, 0 and 1, we have now to
put respectively two sets of levels of C and D, namely, Co^o) and
Cq^i, c^do. It will be found that in the design so generated, the main
effect A will be confounded and also the interactions ^45 and ABCD.

The above procedure can be easily and usefully generalized for the
construction of the general asymmetrical factorial design x i'a x ...
XJ„ (where > Ja ^ ...> and s-^, s^, ..., are all
prime, powers) in blocks of JsX.-.Xj^ plots. Further, having
obtained such a design, we can reduce the block size one step further to
jgx ... X5„, by splitting all the SiX...xSn treatment combinations
in a block into sets of jgX J4X ... X treatment combinations
each by the use of GF{s^ over the factors A^A^.. .A„,. It has to be
remembered that for doing this the same generator is to be used for all
the blocks.

As an illustration, the 5x3x3x2 design in blocks of 6 plots will
be presented.
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In order to avoid complete confounding over AB, we first combine
B and C, and make the one plot sets given by

Z;j = b,Ci

where

;• + / = / mod 3

r -\- 2 t = j mod 3

Next, we combine Z.j with D, and get the sets

: Zid(,, Zgdi

X2 '• Z^dg,

where Z,- consist of Z^j for all j. We then get a 5x3x3x2 design in
3x3x2 plot blocks by combining the Z's with the factor A. To get a
design in blocks of 6 plots, we simply put the treatments with the same
j in Zj in the same block, and those with separate fs in separate blocks.
This will give a design in 4 replications. However, in order to have a
balanced design, we shall have to use four more replications obtained
by separating Z^'s with respect to i in the same way as was done with j.
The total number of replications required for balancing in this case is
(5 — 1) (3 — 1) = 8, and is, in general, — 1) (53 — 1) since we use
two Galois fields, each once, and make blocks per replication.
The 5x3x3x2 design is given in Table VII, where the loss of informa
tion is also shown. The total loss of information is seen to be 14, or
one less than the number of blocks per replication, so that the design
is balanced. This design can be-easily generalized to jx3x3x2 where
5 is a prime power.

Table VII

5x3x3x2^Design in 6-plot blocks

Combinations
of

s, c,n

Level of A Combinations
of B, C, D

for four
exactly similar
replicationsReplication I Replication 11 Replication III Replication IV

Blocl: No.
000 1
111)
220 1
001 1

110 1
221 f

1 4 7 10 13

0 12 3 4

4 0 12 3

3 4 0 1 2

16. 19 22 25 28

0 3 14 2

2 0 3 1 4

'4 2 0 3 1

31 34 37 40 43

0 2 4 1 3

3 0 2 4 1

1 3 0 2 4

46 49 52 55 58

0 4 3 2 1

1 0 4 3 2

2 10 4 3

1000

•| i21
(110
'l 001

220
111
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Table Vll {Contd.)

Combinations
of

B, C,D

Block No.
210]
021)'
100)
211/
020

101 _
Block No.

120

201 •
010
121 ,

200

Oil

Level of A

Replication I Replication II Replication III Replication IV

2 5 8 11 11 17 20 23 26 ^9 32 35 38 41 <4 47 50 5.3 56 59

0 12 3 4 0 3 14 2 0 2 4 1 3 0 4 3 2 1

4 0 12 3 2 0 3 1 4 3 0 2 4 1- I 0 4 3 2

3 '4 0 1'2" 4 2 0 3 1 1 3 0 2 4 2 1 0 4 3

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60

0 12 3 4 0 3 14 2 0 2 4 1 3 0 4 3 2 1

4 0 12 3 2 0 3 1 4 3 0 2 4 1 10 4-32

3 4 0 1 2 • 4 2 0. 3 1 1 3 0 2 ' 4 2 i 0 4 3

Total number of replications =8

Loss of information

Relative loss per d.f. Total loss

Combinations
B, C, D of
for four •

exactly similar
replications

210

101
020

211

100
021

120
Oil

200
121

010
201

A
AB
AC
BCil)

BC{J)
ABC (/)
ABC (/)
ABD
ACD
ABC (/) D
ABC (/) D
BCD
CD
AD

BD
B

C

D

1/6
5/48
5/48
1

0

8/48
5/48,

15/48
15/48
15/48

0

4/6
5/6
5/6

12/6
(Totally confounded)

0

8/6
5/6

15/6
15/6
15/6

0

Total Loss

7

.. 14 = No. of blocks per replication — 1.
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6. Some Further Balanced Designs

6.1. Derivation of One Balanced Design from Another

- Suppose there already exists a balanced design jjX ... X
in blocks of k plots (/c may hQ s '̂Xs^X ... xsj, and we wish to derive
the design for the a^si-xa^s2,x ... X a„,Sm factorial experiment from it,
where a^, a^, ..., a^ are any positive integers. Also, suppose that in
the construction of the given design JiX^gX ... X j„. we had used for
•the factor Ai, an associated vector

(Zi, Z2, • • •) Zsi)

where the Z/s are any elements, not necessarily distinct, of the Galois
field used for the purpose of generating the blocks. Then, for the
construction of the X... Xa„A, design, we. may simply take for
-&e Ai an associated vector of the form

Z2, . . ., Zgll Zi, Z2, . • .; Zg,j, . . . , Zi, Z2, • . •!Zg^

each Zj being repeated times in this vector. Such associated vectors
for Ai should be used in the new: design corresponding to all associated
vectors which were used for the factorwhen the given design SxXs2
X... X5„ was constructed. The block size in the derived design will
be a^xa^x ... Xa„,xk. The block size can be further reduced to any
extent by repeated use of suitable Galois fields. For this purpose
factorisation of a's into primepowers mayalsobe done. This procedure
of derivation of designs with non-prime levels gives a number of useful
designs.

As a:n illustration, we derive the 6x2x2 design from the 3x2x2
design. The associated vectors that we use for the 3x2x2 design are
(0, 1) for B and Cand (0, 0, 1); (0, 1, 0); (1, 0, 0) for Ato be used res
pectively for the three replications in which balancing is achieved. All
these vectors are in GF(2). For the 6x2x2 designs, w^ use the same
vectors for B and C and for A we use (0, 0, 1; 0, 0, 1); (0,1,0; 0, 1,0)
and (1,0,0; 1,0,0) respectively for the three replications. This
gives the 6X2x 2 design shown in Table VIII, in which Xg and Xj_ denote
respectively the sets (feoCg, ^iCi) and {biCg, boCj). In this design, the
total loss of information on BC is 1/9 and that on the two confounded
d.f of ABC is 8/9, so that the total loss is unity and the design is
balanced.

As already mentioned, the above procedure can be used for con
struction of-aU designs irrespective of the number and type of Galois
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Table VIII

6x2x2 Design in \2-plot blocks

Replication I Replication II Replication III

Block No. .. 1 2 3 4 5 6

Level of A Levels of B and C

^0 .. ^0
• ^0

.. A-o -^0

Ci .. ^0 A-o

.. Zo ^0

"i .. A-o

.. A-o ^0 ^0

fields utilized for getting the block size k. Thus, for a 3x2" design
in 6-plot blocks, we use Gf (2) twice with the associated vectors of A
as given above for the 3X2^ design. From this design we can, there
fore, immediately derive the 6x2® design simply by using the associated
vector for A as given above for the 6x2^ design.

A similar procedure is adopted in those cases where two different
Galois fields are to be used. For example, consider the 6x6x2 design
in 12-plot blocks. First, we divide the 72 treatment combinations into
two sets of 36 each by using GF{1) together with (i) a generator of the
form (1, 1, 1), (ii) the associated vector (0,0, 0, 1, 1, 1) for both A and
B and (0, 1) for C. At the second stage, we use Gf (3) and take (0, 1, 2,
0, 1,2) as the associated vectors of A and B and (0, 1) as the associated

. vector of C along with two generators (1, 1, 1) and (1, 2, i) for getting
two different replications, which will provide the balanced design given
in Table IX. In this Table, Cq and Ci denote the two levels of C and
Xi and Yi {i = 0, 1, . .,5) the sets of combinations of levels of A and
B as given in the plan for the 6X6 design. It can be easily seen that in
this design, the interactions AB and ABC are confounded, the total
loss of information being respectively 2 and 3.
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Table IX

6x6x2 Design in \2-plot blocks

Block No. 1 2 3 4 5 6

Replication I XgCg X^c'ij Xlf'o
X^Ci Xoq X,c,

Block No. 1 8 9 10 11 12

Replication II .
•

Y^c,

^0^1 F4C1

The s^xt design in sxt plot blocks, where j is non-prime, can be
constructed by the methods of this Section as a particular case. Some
of the other useful asymmetrical designs which can be constructed in
an optimum manner by use of the above methods are 6x4, 6x4x3,
6x4x2, 6x4x4, 4x3x2, 6x3x2, 3x3x3x4, 6x3x3x2, etc.

6.2. Further Use of b.i.b.d. Property in Obtaining Confounded Designs

Almost all types of factorial designs arising in practice can be con
structed in an optimum manner by appropriately using the methods
discussed so far. Still another method, which may be of use in certain
situations and which serves to indicate the connection between balancing
in asymmetrical factorial experiments and balanced incomplete block
designs, will now be discussed.

Let us consider the construction of a 7 X2 x 2 design. By the use of
hypersurfaces or associated vectors, we can construct a design in 4-plot
iDlocks with 6 replications. In this design, the main effect A is con
founded, which is not desirable. The design belonging to Kishen's
series qx2^ discussed in Section (5.2), taking q =1, is to be preferred
in tlais case, as only the interactions BC and ABC are partially con
founded in this design. However, the loss of information on BC

•in this case is 25/49. An alternative approach for obtaining an opti
mum design in this case is by use of the b.i.b.d. property and will now
be discussed.

Each replication will be divided into two blocks of 2q plots each.
Let Zoand Zi denote the sets (^oCq, and (Z'iCq, ioO of treatment
combinations respectively. Consider a single replication. Block No. 1
of this replication will contain the treatment combinations [a'] Xg and
[a"'] Xi, where a'and a" represent two exhaustive groups for the levels
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of A and Block No. 2 will have the complement of this. If and a '̂
are any two levels in a', and a/', a/ belong to a", then obviously
(^1 ~ ^2) (^1 —^o)j (^1" ~ ^2") (^1 —^0) [((7j' —fla') i (oi" —a/)]
(^1 —^o)> all of which belong to interaction ABC, will not be con
founded. However, contrasts like(fli-ffi") (X^ - Zo) will be confounded.
The question is how to determine a' and a" so that a balanced design is
obtained.

A solution to this problem may be found by considering the possi
bility of selecting the set a' in the different replications in such a manner
that the levels of A included in a' form a balanced incomplete block
design. Since, in that case, every pair oflevels ofAwill occur on equal
number of times with Xf, or X^, every contrast of the type (a, ± a^)
(^1 — (i 7^; = 1, 2, ..., q) will be partiallyconfounded to the same
extent. Thus, both BCand ABC will be estimable, and the design will
be a balanced arrangement.

The loss of information on BC depends on the number of levels
in the sets a' and a". For 7 x2x2 design, we can take 3 levels for a'
and 4 for a", and obtain the design given in Table X.

Table X

7x2x2 Design in \A-plot blocks

A I II III IV V VI VII

- ^0^1 X,Xo

XgXi x„x,

• X,X^ x,x. x,x„

•
X,X, x,x. X,Xo XoX,

<74
•

X,X^ x,x. x„x. X,Xg

• x^x. X^X, XoX, X^Xg x,x„ XfjXj^

«6 . X^X, X^X, x,x„ XgXi XgX, XiXg

In the above design, loss of information on BC is 1/49 and on each
of the six d.f. of ABC is 8/49, so that the total loss of information is 1.
The design is, therefore, balanced.
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We shall now proceed to the general case and consider a qXp"^
design, wherep is an odd prime power and q any integer. (It can be
easily seen that the method holds when p is of the form 2"). Consider
a generator of the type, say, (aj, aj, a^), where is an element of GF{p).
Let ..,p) be any integers such that <q —1,

and S ki —q, so that these divide the total number of levels of A in
1 = 1

p groups, of which one or more groups may have no elements in them.
Also, suppose that for ;=1, 2, ..., p, balanced incomplete block
designs exist with parameters v = q, k= k^ and suitable values of b,
i-f and Aj and can be superimposed on one another so as to give b blocks
of q plots each. Then we take an associated vector of the form
(ofl, ai, ..., ap_i) for B and C, and b different associated vectors for A,
one vector corresponding to each replication, such that each of the
elements in the j-th group (containing k, elements), is a^, an element of
GF (p). A balanced design in b replicates will then be obtained by
using the generator with each of the b associated vectors for A and the
common associated vector for B and C.

As an illustration, consider the 7x3x3 design in 21-plot blocks.
We shall consider the three sets X^, Xj,, X^ of treatment combinations
for the interaction BC defined below:

A-o

Here q = 7.

b^CQ, boC^, ^1^2
^1^0) bfjC^, b^c^,
b-i'̂ o, biCi, bgCi

Also, if we take /q = 3, k^ —^ and /cg = 0, we shall

find that two b.i.b. designs with v = 1 exist, which are superimposable,
as shown in Table XI.

Table XI

Two b.i.b. designs with v = 1

B.I.B.D. No. 1 2

Block No.
1 .. 1 2 3 7 6 5 4

2 .. 1 4 5 7 3 2 6

3 .. 1 6 7 5 4 2 3

4 .. 2 4 6 5 3 1 7

5 ... 2 5 7 6 4 3 1

6 .. 3 4 7 6 2 1 5

7 • .. 3 5 6 7 4 1 2
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We can, therefore, form the 7 different assocmted vectors for A corres
ponding to the 7 replications in the design. Thus, for the 5th rephca-
tion, the associated vector for A will be a,^, a,-^, a,.^, a,.^, ajj
when the a,-,- are elements of GF(3). Here = 0 and = 1. By
using the generator (1, 1, 1), we shall then obtain the design given in
Table XII.

Table XII

7x3x3 Design in 2\-plot blocks

a, • x,x,x. X,x,x^ X2XoXi X2X0X,

:
X^XoX^ XoX,X, XoX,X, X2X0X, X2X0X,

02 • . XoX.X^ X,x,x^ X,XoX, X,XoX^ ^0^1X2 XoX.X,

«3 • . XaZoA-i x,x,x^ X0X1X2 X2X0X, XoX.X, X2X0X1

X,X,X, x^x,x^ X,XoX, XoX^X, XoX.X^

«5 • X,X,X^ XoX^X, XoX^X, X,XoXi X,XoX, XoX.X^

fle • . XaZoZi x,x,x^ X,x,x^ X,XoX, XoX.X, XoXiX, X^XoX,:

It will be seen that in the above design, the interactions BC and ABC
are confounded.

The above procedure can be used to obtain other asymmetrical
designs also, for example, the 7x3x2 design in 14-plot blocks.

7. Analysis of Balanced Designs

Two general methods of analysing partially confounded designs,
which are balanced, will now be briefly discussed to enable the interested
reader to work outformula; for analysis in thecase of any specific design.

7.1. The Qj Method

In any general design where
= number of plots in the fth block (/ = 1, ..., b),

Nj = number of replications of the 7-th treatment (7= 1,

n^ = number of times the 7-th treatment occurs in the ith
block,
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and where tj denotes the effect of the 7-th treatment, it is known
(Kempthorne, 1952) that the normal equations for estimating the tj
can be written in the form

where

N,

= Qi,= 1, 2, t (38)

(39)"
Since the block size and number of replicates of a treatment for all
the designs discussed in this paper are constant, we shall take N^_ = k
and N_j = r. Thus, the normal equations in (38) reduce to

/ ^1 — tj —̂-(sum of fsthat occur in.a block with —Qj
... . ' (40)

The quantities 2, are the well-known adjusted yields for a treat
ment; and may be calculated in an easy and. straightforward" way for
all designs, as indicated in the Table below:

Total "

Total yield •
yield of all

Treat from Blocks in which blocks
ment all the 7-th treatment . in which C
No. replica occurs 7-th treat Sjk Yj- im Sj

tions ment

occurs

1 Bxli ^12) • • •) -®lr s,ik - 61

2 -®21; ^22) • • •; -®2r *^2 -S^lk • 22

j Bjx, Bj2, . • B,y S]ik;\ •; e.

t Btx-, Bt2, • • •; Bj^ s, . .S,lk Qt

The blocks Bij are not all distinct for different i and J.
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- " Now. if A,/: is a treatment cfontrast'wliich we'wish- to -estimate,
it-can be-estimated by I jlr Z is tlie relative.inforination on
the contrast. ' For obtaining the relative information, we first calculate"
the expectation of U X^Qj, where.the expected value of is as shown on
the. Left-hand side of equation (40). " Then, if Q. is-the coefficient of t.
in this expected-value,'-we shall "find-that if is'estimable; from the
full design^ the value-o£ G^/A) will-be-axonstant C.-for allj."' Then, the
relative, information required-is given by- - ' - '

7=
;̂•

(41)

where, as above, /• is the total number of replication's.'. Having cal
culated /,.the sum of squares.corresponding to this contrast will be given

by'.

where, for this purpose, A/s should be + 1, — 1 or zero.

(42)

As an illustration, consider the analysis of the 4x3^ design, the
plan of which is given in Table XIII.

Table XIII

Plan of 4 x-3 '̂ Design -in -l2-plot blocks

' 'Level of"5 and C

Block No.

Level of A

«o

ai

•

1 2 3 4 5 6

7o A -^2 - A) -^1 ^2

Jq J-L Jvi /o -^1 -^2

'̂ 1 ^2 ^0 -^2

Ii 'h h h h h

The /'s denote as usual the well-known 7 sets, corresponding to the
interaction BC{I). It will be found,That the.relative, loss of inforrna-.
tion on the interaction BC (7) is and that on + a, — — ^o) BC (7)
corhpohents' of ABC interaction "is |. Two independent comparisons
belonging to BC{I) are +-fl2 4- Oi + «o)'(^2 —7o) and ~
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(^3 + ^2 + «1 + «o) ih — 2/i + /q). The estimates of and will be
found to be = 4/3 - gj, = 4/3 - 22,^ + gj where

is the sum of the g's for all the nine treatment combinations con
tained in the set (/" = 0, 1, 2, 3; /(, = b^c^, b^c^, with similar
definitions for QI^ and QI^. Similarly, if = {a^ + a^ —a^ —
{h —Q and 1,4 = (og + ^2 —flj —cfg) (/a —2/1 + Ig), we shall have
^3 ~ 4 (Qajfi + QdJi —QoiIq QOqJq 6^3^o 2^2^~I~ 2^1-^0
with a similar expression for L^. The sum of squares for BC (/) will be

9-(a. - QuY + (2.. - 26., +

7.2. Yates's Method

This method, which has been suggested by Yates (1937), has been
used by him and Li (1944) for the analysis of balanced asymmetrical
factorial designs. The method can be utilized for the analysis of the
balanced designs discussed in this paper. However, it is particularly
appropriate for the analysis of Kishen's series of designs presented in
Section (5.2). For illustration, we shall now give briefly the method of
analysis of the qxl'^ design in blocks of 2q plots, the plan for which is
shown in Table XIV.

Table XIV

Plan of qx2^ Design

Bii -®21 -®22 -Ssl ^32 • • -^02

Level of A

dg . . Xg Xi Xi Xg Xi Xg . , Xi Xg

Cll . . Xl Xg Xg Xl Xl Xg . . X^ Xg

^2 . . X-^ Xg X;i Xg Xg Xi . . X^ Xg

a„_^ .. Zo ;^ri . . A-o X,

Here = bgCg + b^c^, X^ = bgC^ + biCg.

The constants to be fitted by the method of least squares are chosen
according to the following scheme:

>S)
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Blocks: - b^, ; - b^, b^.

Interaction BC: X„, /, —/.

Interaction ABC: Xgaj, X^cij; ij, — /,• (7 = 0, 1, 2, ..9 — 1),

Sii = 0.
i=o

Denoting the block totals in the7-th replication by B^^, Bj2 (7= 1, 2, ..
q), we take, following Yates,

Si = ~ ^i2 0' = 1; 2, ..q).

We also use [BC\ to denote, as Yates has done, the ordinary total for
this interaction. Similarly, we use [BCMj] {j = Q,\,2, ..q — \)
for the total for the interaction in the presence of Oj, the contrast between
these q totals giving the interaction ABC.

The normal equations for determining the above constants then
come out as under:

V/+4(9-2)(ii.)= [5C]
49/1 + Aqf+A{-b^ + b^+...+bq)= [BC.a^\

Aqk + 4^/+ A{b^-b^ + ... +bq)=^ [5C.aJ

Aqi^ + 4 qf+ 4 (Z)i + + ... - b,) = [BC.a,_i]

Aqbi + 4 (17 —2)/ + 4 (— /'i + /2 + ... + i„) = —gi

Aqbi + 4 (^ — 2)/ + 4 (/i — /a + ... + = — gi

4qb, + 4{q- 2)f+ 4 + h+ ••••- h) = - ga

By solving the above equations, we obtain

I6q{q- l)f= q [BC] + (q - 2) S g,,
1=1

Taking

q[BC]+{q-2)L'g,=^qQ,'
i=i

we have

Q
/= 16 (9 - 1) •
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The estimate of BCin units of the yield of a single plot is given by

(gg)

The error variance of BC is given by

V{2f) =
4(9-1)-

In an unconfounded experiment, the estimate of BC would be [BC]
and its error variance would be

The relative information is, therefore, given by the ratio

1 1 4 (9 - 1)
q^l A{q-\) q^ '

so that the relative loss of information on BC is given by

{.q ~ 2YL (BC) =
T

The sum of squares for BC is

_ {qQY
16(^-1) 165-^9-1)

as compared with {IjAq^) [BCf in an unconfounded experiment.

The estimate of ABC is obtained in a similar manner by solution
of the normal equations given above. Thus, for estimating ij (j = 0, 1,
2, ...,q- 1), we get

4(9^-4)/,+ 16(?-1)/=^J?,,

where

qRj = q[BC.ai\ + + ^2 + •••+ —g-y+i + ^,+2 + •••+ g-,.
We thus obtain

where

h =
q

4(^^-4)

Q—1

SRi

q

(; = 0,
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The estimate of the interaction ABC, in units of a single plot yield,
is given by

so that we may write

ABC —2^^2 4^ ' ^<t-^

^ dev {qRa,qRx,
2(^2-4)

as compared with {Ijlq) [BC.a^, etc., in an unconfouaded experiment.
The error variance applicable to each of these quantities is

yn^- - g4(^2_4) qi-A

as compared with cr^jq'̂ when there is no confounding.

The relative information is, therefore,

q^-4

'

so that the loss of information on each degree of freedom of ABC
is given by

LiABC) =^,.
Hence the total loss of information on both the interactions is

{q-2y + 4iq-l)
— 1,

so that the design is balanced. The sum of squares for the interaction
ABC is given by

^ dev'-(qRa, qRi, .. •, qR^-i)-
~ 4q (q^ - 4)

^ 8. Summary

The method of finite geometries developed earher by Bose and
Kishen for solving the problem of confounding in the general sym
metrical factorial design has been extended to the construction of
balanced confounded asymmetrical factorial designs which were not
so far amenable to this approach. This has been achieved by using
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curvilinear spaces or hypersurfaces and truncating the EG (m, s)
suitably. A more general method, using vectors in Galois fields, has
also been introduced and a unified theory for the construction of both
symmetrical and asymmetrical factorial designs developed. It has
been shown that, with the help of this theory, symmetrical confounded
factorial designs s'", where ^ is not a prime number or a prime power, as
also almost all types of asymmetrical factorial designs can be constructed
in an optimum manner. Methods of deriving symmetrical and asym
metrical factorial designs, using the b.i.b. property, have also been given,
besides methods of reducing the number of replications required for
balancing in asymmetrical designs and of deriving balanced designs of
the type OiSiXOzSiX ... xa„s„, from a given ... Xj„. design.
Finally, two methods of analysis of balanced partially confounded
designs have been briefly discussed to enable the interested reader to
work out formulae for analysis of any specific design.
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